Quanyin Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8591862/publications.pdf

Version: 2024-02-01

34493 64407 11,640 81 54 83 citations h-index g-index papers 85 85 85 14304 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Scattered seeding of CAR T cells in solid tumors augments anticancer efficacy. National Science Review, 2022, 9, nwab172.	4.6	57
2	Harnessing DNA for Immunotherapy: Cancer, Infectious Diseases, and Beyond. Advanced Functional Materials, 2022, 32, .	7.8	10
3	Recent advances in overcoming barriers to cellâ€based delivery systems for cancer immunotherapy. Exploration, 2022, 2, .	5.4	68
4	Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment. Nature Communications, 2022, 13, 1845.	5.8	77
5	Recent advances in biomaterial-assisted cell therapy. Journal of Materials Chemistry B, 2022, 10, 7222-7238.	2.9	6
6	Proteolysis-targeting chimera (PROTAC) delivery system: advancing protein degraders towards clinical translation. Chemical Society Reviews, 2022, 51, 5330-5350.	18.7	50
7	Cellâ€Based Delivery Systems: Emerging Carriers for Immunotherapy. Advanced Functional Materials, 2021, 31, 2100088.	7.8	60
8	Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nature Biomedical Engineering, 2021, 5, 1038-1047.	11.6	164
9	Emerging self-regulated micro/nano drug delivery devices: A step forward towards intelligent diagnosis and therapy. Nano Today, 2021, 38, 101127.	6.2	12
10	Vaccine delivery systems toward lymph nodes. Advanced Drug Delivery Reviews, 2021, 179, 113914.	6.6	62
11	Chemically and Biologically Engineered Bacteriaâ€Based Delivery Systems for Emerging Diagnosis and Advanced Therapy. Advanced Materials, 2021, 33, e2102580.	11.1	93
12	Engineered platelets: Advocates for tumor immunotherapy. Nano Today, 2021, 40, 101281.	6.2	15
13	Biomaterials coating for on-demand bacteria delivery: Selective release, adhesion, and detachment. Nano Today, 2021, 41, 101291.	6.2	50
14	CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation. Science Advances, 2020, 6, eaba2983.	4.7	77
15	Strategies of Combination Drug Delivery for Immune Checkpoint Blockades. Advanced Healthcare Materials, 2019, 8, e1801099.	3.9	32
16	Sequentially Site-Specific Delivery of Thrombolytics and Neuroprotectant for Enhanced Treatment of Ischemic Stroke. ACS Nano, 2019, 13, 8577-8588.	7.3	135
17	Adipocytes as Anticancer Drug Delivery Depot. Matter, 2019, 1, 1203-1214.	5.0	53
18	Photothermal Therapy: Photothermal Therapy Promotes Tumor Infiltration and Antitumor Activity of CAR T Cells (Adv. Mater. 23/2019). Advanced Materials, 2019, 31, 1970166.	11.1	18

#	Article	IF	CITATIONS
19	Photothermal Therapy Promotes Tumor Infiltration and Antitumor Activity of CAR T Cells. Advanced Materials, 2019, 31, e1900192.	11.1	291
20	A Dualâ€Bioresponsive Drugâ€Delivery Depot for Combination of Epigenetic Modulation and Immune Checkpoint Blockade. Advanced Materials, 2019, 31, e1806957.	11.1	145
21	A Therapeutic Microneedle Patch Made from Hair-Derived Keratin for Promoting Hair Regrowth. ACS Nano, 2019, 13, 4354-4360.	7.3	184
22	In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nature Nanotechnology, 2019, 14, 89-97.	15.6	725
23	Platelet for drug delivery. Current Opinion in Biotechnology, 2019, 58, 81-91.	3.3	132
24	Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy. Nano Research, 2019, 12, 1313-1320.	5.8	83
25	In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Science Translational Medicine, 2018, 10, .	5.8	439
26	Advances in transformable drug delivery systems. Biomaterials, 2018, 178, 546-558.	5.7	57
27	PD‶ Blockade Cellular Vesicles for Cancer Immunotherapy. Advanced Materials, 2018, 30, e1707112.	11.1	196
28	Leveraging Engineering of Cells for Drug Delivery. Accounts of Chemical Research, 2018, 51, 668-677.	7.6	106
29	Cancer Immunotherapy: PD‶ Blockade Cellular Vesicles for Cancer Immunotherapy (Adv. Mater.) Tj ETQq1 1 C).784314 r 11.1	gBT ₂₁ /Overloc
30	Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nature Biomedical Engineering, 2018, 2, 831-840.	11.6	220
31	Injectable Bioresponsive Gel Depot for Enhanced Immune Checkpoint Blockade. Advanced Materials, 2018, 30, e1801527.	11.1	233
32	Delivery Strategies for Immune Checkpoint Blockade. Advanced Healthcare Materials, 2018, 7, e1800424.	3.9	76
33	Engineering PD-1-Presenting Platelets for Cancer Immunotherapy. Nano Letters, 2018, 18, 5716-5725.	4.5	172
34	In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nature Biomedical Engineering, 2017, 1, .	11.6	390
35	Anaerobeâ€Inspired Anticancer Nanovesicles. Angewandte Chemie - International Edition, 2017, 56, 2588-2593.	7.2	124
36	Relay Drug Delivery for Amplifying Targeting Signal and Enhancing Anticancer Efficacy. Advanced Materials, 2017, 29, 1605803.	11.1	56

#	Article	IF	CITATIONS
37	Engineering platelet-mimicking drug delivery vehicles. Frontiers of Chemical Science and Engineering, 2017, 11, 624-632.	2.3	29
38	Anaerobeâ€Inspired Anticancer Nanovesicles. Angewandte Chemie, 2017, 129, 2632-2637.	1.6	20
39	Innentitelbild: Anaerobeâ€Inspired Anticancer Nanovesicles (Angew. Chem. 10/2017). Angewandte Chemie, 2017, 129, 2558-2558.	1.6	3
40	Tailoring Biomaterials for Cancer Immunotherapy: Emerging Trends and Future Outlook. Advanced Materials, 2017, 29, 1606036.	11.1	220
41	Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer. Nano Letters, 2017, 17, 2138-2145.	4.5	179
42	A melanin-mediated cancer immunotherapy patch. Science Immunology, 2017, 2, .	5.6	300
43	Leveraging Physiology for Precision Drug Delivery. Physiological Reviews, 2017, 97, 189-225.	13.1	125
44	ATP-Responsive and Near-Infrared-Emissive Nanocarriers for Anticancer Drug Delivery and Real-Time Imaging. Theranostics, 2016, 6, 1053-1064.	4.6	54
45	Lightâ€Activated Hypoxiaâ€Responsive Nanocarriers for Enhanced Anticancer Therapy. Advanced Materials, 2016, 28, 3313-3320.	11.1	421
46	Dual targeted nanocarrier for brain ischemic stroke treatment. Journal of Controlled Release, 2016, 233, 64-71.	4.8	124
47	Transformable DNA nanocarriers for plasma membrane targeted delivery of cytokine. Biomaterials, 2016, 96, 1-10.	5.7	46
48	Tumor Microenvironment and Angiogenic Blood Vessels Dual-Targeting for Enhanced Anti-Glioma Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 23568-23579.	4.0	37
49	Synergistic Transcutaneous Immunotherapy Enhances Antitumor Immune Responses through Delivery of Checkpoint Inhibitors. ACS Nano, 2016, 10, 8956-8963.	7.3	275
50	Engineered Nanoplatelets for Enhanced Treatment of Multiple Myeloma and Thrombus. Advanced Materials, 2016, 28, 9573-9580.	11.1	182
51	Enhanced Antiglioblastoma Efficacy of Neovasculature and Glioma Cells Dual Targeted Nanoparticles. Molecular Pharmaceutics, 2016, 13, 3506-3517.	2.3	27
52	Anticancer Therapy: Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy (Adv. Mater. 17/2016). Advanced Materials, 2016, 28, 3226-3226.	11.1	6
53	Photo-Cross-Linked Scaffold with Kartogenin-Encapsulated Nanoparticles for Cartilage Regeneration. ACS Nano, 2016, 10, 1292-1299.	7.3	215
54	Tumor Microenvironment-Mediated Construction and Deconstruction of Extracellular Drug-Delivery Depots. Nano Letters, 2016, 16, 1118-1126.	4.5	148

#	Article	IF	CITATIONS
55	Recent advances of cocktail chemotherapy by combination drug delivery systems. Advanced Drug Delivery Reviews, 2016, 98, 19-34.	6.6	496
56	Nanomedicine: Anticancer Plateletâ€Mimicking Nanovehicles (Adv. Mater. 44/2015). Advanced Materials, 2015, 27, 7014-7014.	11.1	8
57	Anticancer Plateletâ€Mimicking Nanovehicles. Advanced Materials, 2015, 27, 7043-7050.	11.1	497
58	Selfâ€Assembled DNA Nanoclews for the Efficient Delivery of CRISPR–Cas9 for Genome Editing. Angewandte Chemie - International Edition, 2015, 54, 12029-12033.	7.2	517
59	Transformable liquid-metal nanomedicine. Nature Communications, 2015, 6, 10066.	5.8	466
60	Spatiotemporal drug delivery using laser-generated-focused ultrasound system. Journal of Controlled Release, 2015, 220, 592-599.	4.8	68
61	Titelbild: Self-Assembled DNA Nanoclews for the Efficient Delivery of CRISPR-Cas9 for Genome Editing (Angew. Chem. 41/2015). Angewandte Chemie, 2015, 127, 12045-12045.	1.6	0
62	Facilitated brain delivery of poly (ethylene glycol)–poly (lactic acid) nanoparticles by microbubble-enhanced unfocused ultrasound. Biomaterials, 2014, 35, 3384-3395.	5.7	49
63	Co-administration of Dual-Targeting Nanoparticles with Penetration Enhancement Peptide for Antiglioblastoma Therapy. Molecular Pharmaceutics, 2014, 11, 90-101.	2.3	72
64	Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 2014, 6, 12273-12286.	2.8	456
65	PEG-PLA nanoparticles modified with APTEDB peptide for enhanced anti-angiogenic and anti-glioma therapy. Biomaterials, 2014, 35, 8215-8226.	5.7	82
66	Lipoprotein-Based Nanoparticles Rescue the Memory Loss of Mice with Alzheimer's Disease by Accelerating the Clearance of Amyloid-Beta. ACS Nano, 2014, 8, 2345-2359.	7.3	179
67	iNGR-modified PEG-PLGA nanoparticles that recognize tumor vasculature and penetrate gliomas. Biomaterials, 2014, 35, 4319-4332.	5.7	78
68	CGKRK-modified nanoparticles for dual-targeting drug delivery to tumor cells and angiogenic blood vessels. Biomaterials, 2013, 34, 9496-9508.	5.7	68
69	Cellular internalization pathway and transcellular transport of pegylated polyester nanoparticles in Caco-2 cells. International Journal of Pharmaceutics, 2013, 445, 58-68.	2.6	45
70	Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery ofÂNAP peptide following intranasal administration. Biomaterials, 2013, 34, 3870-3881.	5.7	167
71	Activatable Cell Penetrating Peptide-Conjugated Nanoparticles with Enhanced Permeability for Site-Specific Targeting Delivery of Anticancer Drug. Bioconjugate Chemistry, 2013, 24, 419-430.	1.8	34
72	B6 Peptide-Modified PEG-PLA Nanoparticles for Enhanced Brain Delivery of Neuroprotective Peptide. Bioconjugate Chemistry, 2013, 24, 997-1007.	1.8	126

#	Article	lF	CITATIONS
73	Glioma therapy using tumor homing and penetrating peptide-functionalized PEG–PLA nanoparticles loaded with paclitaxel. Biomaterials, 2013, 34, 5640-5650.	5.7	149
74	The influence of the penetrating peptide iRGD on the effect of paclitaxel-loaded MT1-AF7p-conjugated nanoparticles on glioma cells. Biomaterials, 2013, 34, 5138-5148.	5.7	123
75	PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials, 2013, 34, 196-208.	5.7	165
76	F3 peptide-functionalized PEG-PLA nanoparticles co-administrated with tLyp-1 peptide for anti-glioma drug delivery. Biomaterials, 2013, 34, 1135-1145.	5.7	174
77	Penetratin-functionalized PEG–PLA nanoparticles for brain drug delivery. International Journal of Pharmaceutics, 2012, 436, 840-850.	2.6	135
78	Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption. International Journal of Nanomedicine, 2012, 7, 3703.	3.3	52
79	Preparation and characterization of paclitaxel-loaded DSPE-PEG-liquid crystalline nanoparticles (LCNPs) for improved bioavailability. International Journal of Pharmaceutics, 2012, 424, 58-66.	2.6	66
80	Mechanisms of transcellular transport of wheat germ agglutinin-functionalized polymeric nanoparticles in Caco-2 cells. Biomaterials, 2012, 33, 6769-6782.	5.7	41
81	Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials, 2011, 32, 9888-9898.	5.7	133