
Humphrey H-C Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8591242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Somatic cell fate maintenance in mouse fetal testes via autocrine/paracrine action of AMH and activin B. Nature Communications, 2022, 13, .	5.8	8
2	Developmental and sexual dimorphic atlas of the prenatal mouse external genitalia at the single-cell level. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
3	Constitutive expression of Steroidogenic factorâ€1 (NR5A1) disrupts ovarian functions, fertility, and metabolic homeostasis in female mice. FASEB Journal, 2021, 35, e21770.	0.2	7
4	<i>DMRT1</i> gene disruption alone induces incomplete gonad feminization in chicken. FASEB Journal, 2021, 35, e21876.	0.2	16
5	Patterns, Profiles, and Parsimony: Dissecting Transcriptional Signatures From Minimal Single-Cell RNA-Seq Output With SALSA. Frontiers in Genetics, 2020, 11, 511286.	1.1	1
6	Aberrant and constitutive expression of FOXL2 impairs ovarian development and functions in mice. Biology of Reproduction, 2020, 103, 966-977.	1.2	10
7	Increased FOXL2 expression alters uterine structures and functionsâ€. Biology of Reproduction, 2020, 103, 951-965.	1.2	5
8	Developmental Exposure to Tetrabromobisphenol A Has Minimal Impact on Male Rat Reproductive Health. Reproductive Toxicology, 2020, 95, 59-65.	1.3	4
9	In utero exposure to arsenite contributes to metabolic and reproductive dysfunction in male offspring of CD-1 mice. Reproductive Toxicology, 2020, 95, 95-103.	1.3	12
10	Canonical Wnt/β-catenin activity and differential epigenetic marks direct sexually dimorphic regulation of <i>Irx3</i> and <i>Irx5</i> in developing gonads. Development (Cambridge), 2020, 147, .	1.2	8
11	Molecular Actions Underlying Wolffian Duct Regression in Sexual Differentiation of Murine Reproductive Tracts. Sexual Development, 2020, 14, 51-59.	1.1	6
12	RUNX1 maintains the identity of the fetal ovary through an interplay with FOXL2. Nature Communications, 2019, 10, 5116.	5.8	59
13	A tale of two tracts: history, current advances, and future directions of research on sexual differentiation of reproductive tractsâ€. Biology of Reproduction, 2019, 101, 602-616.	1.2	36
14	At the Crossroads of Fate—Somatic Cell Lineage Specification in the Fetal Gonad. Endocrine Reviews, 2018, 39, 739-759.	8.9	104
15	Genome-wide identification of FOXL2 binding and characterization of FOXL2 feminizing action in the fetal gonads. Human Molecular Genetics, 2018, 27, 4273-4287.	1.4	49
16	Cellular and Structural Aspects of Fetal Ovarian Differentiation. , 2018, , 52-56.		0
17	Loss of Glis3 causes dysregulation of retrotransposon silencing and germ cell demise in fetal mouse testis. Scientific Reports, 2018, 8, 9662.	1.6	3
18	Reproductive, Physiological, and Molecular Outcomes in Female Mice Deficient in Dhh and Ihh. Endocrinology, 2018, 159, 2563-2575.	1.4	16

HUMPHREY H-C YAO

#	Article	IF	CITATIONS
19	Teratogenic effects of <i>in utero</i> exposure to di-(2-ethylhexyl)-phthalate (DEHP) in B6:129S4 mice. Toxicological Sciences, 2017, 157, kfx019.	1.4	12
20	A new mouse line for cell ablation by diphtheria toxin subunit A controlled by a Creâ€dependent FLEx switch. Genesis, 2017, 55, e23067.	0.8	15
21	Cell-based computational model of early ovarian development in miceâ€. Biology of Reproduction, 2017, 97, 365-377.	1.2	6
22	Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science, 2017, 357, 717-720.	6.0	72
23	Leveraging Online Resources to Prioritize Candidate Genes for Functional Analyses: Using the Fetal Testis as a Test Case. Sexual Development, 2017, 11, 1-20.	1.1	4
24	Effects of <i>in Utero</i> Exposure to Arsenic during the Second Half of Gestation on Reproductive End Points and Metabolic Parameters in Female CD-1 Mice. Environmental Health Perspectives, 2016, 124, 336-343.	2.8	68
25	Response to "Comment on â€~Effects of in Utero Exposure to Arsenic during the Second Half of Gestation on Reproductive End Points and Metabolic Parameters in Female CD-1 Mice'― Environmental Health Perspectives, 2016, 124, A46-7.	2.8	11
26	Mapping lineage progression of somatic progenitor cells in the mouse fetal testis. Development (Cambridge), 2016, 143, 3700-3710.	1.2	57
27	Transcription Factor GLIS3: A New and Critical Regulator of Postnatal Stages of Mouse Spermatogenesis. Stem Cells, 2016, 34, 2772-2783.	1.4	26
28	Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nature Communications, 2015, 6, 6934.	5.8	157
29	Establishment of fetal Sertoli cells and their role in testis morphogenesis. , 2015, , 57-79.		10
30	Gonadal Identity in the Absence of Pro-Testis Factor SOX9 and Pro-Ovary Factor Beta-Catenin in Mice1. Biology of Reproduction, 2015, 93, 35.	1.2	59
31	Loss of Smad4 in Sertoli and Leydig Cells Leads to Testicular Dysgenesis and Hemorrhagic Tumor Formation in Mice1. Biology of Reproduction, 2014, 90, 62.	1.2	22
32	Building an Ovary: Insights into Establishment of Somatic Cell Lineages in the Mouse. Sexual Development, 2014, 8, 243-251.	1.1	34
33	How to Make a Gonad: Cellular Mechanisms Governing Formation of the Testes and Ovaries. Sexual Development, 2013, 7, 7-20.	1.1	67
34	Dynamic changes in fetal Leydig cell populations influence adult Leydig cell populations in mice. FASEB Journal, 2013, 27, 2657-2666.	0.2	47
35	Investigating the role of adrenal cortex in organization and differentiation of the adrenal medulla in mice. Molecular and Cellular Endocrinology, 2012, 361, 165-171.	1.6	16
36	Sex and hedgehog: roles of genes in the hedgehog signaling pathway in mammalian sexual differentiation. Chromosome Research, 2012, 20, 247-258.	1.0	60

HUMPHREY H-C YAO

#	Article	IF	CITATIONS
37	Investigating the Origins of Somatic Cell Populations in the Perinatal Mouse Ovaries Using Genetic Lineage Tracing and Immunohistochemistry. Methods in Molecular Biology, 2012, 825, 211-221.	0.4	6
38	A Transcriptome-Wide Screen for mRNAs Enriched in Fetal Leydig Cells: CRHR1 Agonism Stimulates Rat and Mouse Fetal Testis Steroidogenesis. PLoS ONE, 2012, 7, e47359.	1.1	34
39	Testicular Somatic Cells, not Gonocytes, Are the Major Source of Functional Activin A during Testis Morphogenesis. Endocrinology, 2011, 152, 4358-4367.	1.4	20
40	Redundant and Differential Roles of Transcription Factors Gli1 and Gli2 in the Development of Mouse Fetal Leydig Cells1. Biology of Reproduction, 2011, 84, 894-899.	1.2	56
41	Diverse functions of Hedgehog signaling in formation and physiology of steroidogenic organs. Molecular Reproduction and Development, 2010, 77, 489-496.	1.0	26
42	Di-(2-ethylhexyl) phthalate and mono-(2-ethylhexyl) phthalate inhibit growth and reduce estradiol levels of antral follicles in vitro. Toxicology and Applied Pharmacology, 2010, 242, 224-230.	1.3	136
43	Inactivation of Dicer1 in Steroidogenic factor 1-positive cells reveals tissue-specific requirement for Dicer1in adrenal, testis, and ovary. BMC Developmental Biology, 2010, 10, 66.	2.1	39
44	WNT4/β-Catenin Pathway Maintains Female Germ Cell Survival by Inhibiting Activin βB in the Mouse Fetal Ovary. PLoS ONE, 2010, 5, e10382.	1.1	58
45	Building Pathways for Ovary Organogenesis in the Mouse Embryo. Current Topics in Developmental Biology, 2010, 90, 263-290.	1.0	65
46	Activin A, a product of fetal Leydig cells, is a unique paracrine regulator of Sertoli cell proliferation and fetal testis cord expansion. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10526-10531.	3.3	117
47	Progenitor Cell Expansion and Organ Size of Mouse Adrenal Is Regulated by Sonic Hedgehog. Endocrinology, 2010, 151, 1119-1128.	1.4	98
48	Fetal Leydig Cells: Progenitor Cell Maintenance and Differentiation. Journal of Andrology, 2010, 31, 11-15.	2.0	71
49	Methoxychlor inhibits growth of antral follicles by altering cell cycle regulators. Toxicology and Applied Pharmacology, 2009, 240, 1-7.	1.3	21
50	Epithelialâ€nesenchymal crosstalk in Wolffian duct and fetal testis cord development. Genesis, 2009, 47, 40-48.	0.8	16
51	Development and morphogenesis of the Wolffian/epididymal duct, more twists and turns. Developmental Biology, 2009, 325, 6-14.	0.9	84
52	Activation of the Hedgehog pathway in the mouse fetal ovary leads to ectopic appearance of fetal Leydig cells and female pseudohermaphroditism. Developmental Biology, 2009, 329, 96-103.	0.9	88
53	Stem cell potential of the mammalian gonad. Frontiers in Bioscience - Elite, 2009, E1, 510-518.	0.9	2
54	Sex-specific roles of Â-catenin in mouse gonadal development. Human Molecular Genetics, 2008, 18, 405-417.	1.4	155

HUMPHREY H-C YAO

#	Article	IF	CITATIONS
55	The Battle of the Sexes: Opposing Pathways in Sex Determination. Novartis Foundation Symposium, 2008, , 187-202.	1.2	25
56	Essential roles of inhibin beta A in mouse epididymal coiling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11322-11327.	3.3	66
57	Essential roles of mesenchyme-derived beta-catenin in mouse Müllerian duct morphogenesis. Developmental Biology, 2007, 307, 227-236.	0.9	87
58	Fetal Leydig Cells. , 2007, , 47-54.		9
59	The road to maleness: from testis to Wolffian duct. Trends in Endocrinology and Metabolism, 2006, 17, 223-228.	3.1	46
60	Sexually Dimorphic Regulation of Inhibin Beta B in Establishing Gonadal Vasculature in Mice1. Biology of Reproduction, 2006, 74, 978-983.	1.2	96
61	Temperature, Genes, and Sex: a Comparative View of Sex Determination in Trachemys scripta and Mus musculus. Journal of Biochemistry, 2005, 138, 5-12.	0.9	45
62	Organogenesis of the Ovary. Organogenesis, 2005, 2, 36-41.	0.4	14
63	The pathway to femaleness: current knowledge on embryonic development of the ovary. Molecular and Cellular Endocrinology, 2005, 230, 87-93.	1.6	98
64	Follistatin operates downstream ofWnt4 in mammalian ovary organogenesis. Developmental Dynamics, 2004, 230, 210-215.	0.8	322
65	Cellular mechanisms of sex determination in the red-eared slider turtle, Trachemys scripta. Mechanisms of Development, 2004, 121, 1393-1401.	1.7	52
66	Colocalization of WT1 and cell proliferation reveals conserved mechanisms in temperature-dependent sex determination. Genesis, 2003, 35, 193-201.	0.8	27
67	AMH induces mesonephric cell migration in XX gonads. Molecular and Cellular Endocrinology, 2003, 211, 1-7.	1.6	50
68	Meiotic germ cells antagonize mesonephric cell migration and testis cord formation in mouse gonads. Development (Cambridge), 2003, 130, 5895-5902.	1.2	126
69	Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes and Development, 2002, 16, 1433-1440.	2.7	435
70	Disruption of Testis Cords by Cyclopamine or Forskolin Reveals Independent Cellular Pathways in Testis Organogenesis. Developmental Biology, 2002, 246, 356-365.	0.9	93
71	The battle of the sexes: opposing pathways in sex determination. Novartis Foundation Symposium, 2002, 244, 187-98; discussion 198-206, 253-7.	1.2	5
72	Chicken Granulosa Cells Show Differential Expression of Epidermal Growth Factor (EGF) and Luteinizing Hormone (LH) Receptor Messenger RNA and Differential Responsiveness to EGF and LH Dependent upon Location of Granulosa Cells to the Germinal Disc1. Biology of Reproduction, 2001, 64, 1790-1796.	1.2	42

Humphrey H-C Yao

#	Article	IF	CITATIONS
73	Restricted Expression of WT1 Messenger Ribonucleic Acid in Immature Ovarian Follicles: Uniformity in Mammalian and Avian Species and Maintenance during Reproductive Senescence1. Biology of Reproduction, 1999, 60, 365-373.	1.2	38
74	Epidermal Growth Factor in the Germinal Disc and Its Potential Role in Follicular Development in the Chicken1. Biology of Reproduction, 1998, 59, 522-526.	1.2	27
75	Destruction of the Germinal Disc Region of an Immature Preovulatory Chicken Follicle Induces Atresia and Apoptosis1. Biology of Reproduction, 1998, 59, 516-521.	1.2	28
76	One Tool for Many Jobs: Divergent and Conserved Actions of Androgen Signaling in Male Internal Reproductive Tract and External Genitalia. Frontiers in Endocrinology, 0, 13, .	1.5	2