Ariel A Di Nardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8591064/publications.pdf

Version: 2024-02-01

36 papers 2,616 citations

361296 20 h-index 36 g-index

47 all docs

47 docs citations

47 times ranked 2619 citing authors

#	Article	IF	Citations
1	Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature, 2004, 430, 586-590.	13.7	445
2	Experience-Dependent Transfer of Otx2 Homeoprotein into the Visual Cortex Activates Postnatal Plasticity. Cell, 2008, 134, 508-520.	13.5	437
3	Otx2 Binding to Perineuronal Nets Persistently Regulates Plasticity in the Mature Visual Cortex. Journal of Neuroscience, 2012, 32, 9429-9437.	1.7	332
4	Choroid-Plexus-Derived Otx2 Homeoprotein Constrains Adult Cortical Plasticity. Cell Reports, 2013, 3, 1815-1823.	2.9	148
5	Hydrophobic core packing in the SH3 domain folding transition state. Nature Structural Biology, 2002, 9, 126-130.	9.7	139
6	Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions. Journal of Molecular Biology, 2000, 303, 433-446.	2.0	109
7	Perineuronal nets in brain physiology and disease. Seminars in Cell and Developmental Biology, 2019, 89, 125-135.	2.3	100
8	Dramatic acceleration of protein folding by stabilization of a nonnative backbone conformation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7954-7959.	3.3	79
9	Electronic Absorption Spectra of Some Alkoxyl Radicals. An Experimental and Theoretical Study. Journal of the American Chemical Society, 1995, 117, 2711-2718.	6.6	74
10	Homeoprotein Signaling in the Developing and Adult Nervous System. Neuron, 2015, 85, 911-925.	3.8	67
11	Genetic Otx2 mis-localization delays critical period plasticity across brain regions. Molecular Psychiatry, 2017, 22, 680-688.	4.1	67
12	The Relationship Between Conservation, Thermodynamic Stability, and Function in the SH3 Domain Hydrophobic Core. Journal of Molecular Biology, 2003, 333, 641-655.	2.0	64
13	Retinal Input Directs the Recruitment of Inhibitory Interneurons into Thalamic Visual Circuits. Neuron, 2014, 81, 1057-1069.	3.8	63
14	The topological role of homeoproteins in the developing central nervous system. Trends in Neurosciences, 2007, 30, 260-267.	4.2	48
15	Dendritic localization and activity-dependent translation of Engrailed 1 transcription factor. Molecular and Cellular Neurosciences, 2007, 35, 230-236.	1.0	46
16	The Physiology of Homeoprotein Transduction. Physiological Reviews, 2018, 98, 1943-1982.	13.1	45
17	Non-cell Autonomous OTX2 Homeoprotein Regulates Visual Cortex Plasticity Through Gadd45b/g. Cerebral Cortex, 2019, 29, 2384-2395.	1.6	41
18	Graded Otx2 activities demonstrate dose-sensitive eye and retina phenotypes. Human Molecular Genetics, 2014, 23, 1742-1753.	1.4	38

#	Article	IF	CITATIONS
19	A Mouse Model for Conditional Secretion of Specific Single-Chain Antibodies Provides Genetic Evidence for Regulation of Cortical Plasticity by a Non-cell Autonomous Homeoprotein Transcription Factor. PLoS Genetics, 2016, 12, e1006035.	1.5	38
20	OTX2 Signals from the Choroid Plexus to Regulate Adult Neurogenesis. ENeuro, 2019, 6, ENEURO.0262-18.2019.	0.9	35
21	Regulation of Perineuronal Nets in the Adult Cortex by the Activity of the Cortical Network. Journal of Neuroscience, 2021, 41, 5779-5790.	1.7	31
22	Diurnal changes in perineuronal nets and parvalbumin neurons in the rat medial prefrontal cortex. Brain Structure and Function, 2021, 226, 1135-1153.	1.2	24
23	Homeoprotein transduction in neurodevelopment and physiopathology. Science Advances, 2020, 6, .	4.7	17
24	Extracellular Pax6 Regulates Tangential Cajal–Retzius Cell Migration in the Developing Mouse Neocortex. Cerebral Cortex, 2020, 30, 465-475.	1.6	13
25	Non-cell-autonomous OTX2 transcription factor regulates anxiety-related behavior in the mouse. Molecular Psychiatry, 2021, 26, 6469-6480.	4.1	13
26	Non-Cell-Autonomous Factors Implicated in Parvalbumin Interneuron Maturation and Critical Periods. Frontiers in Neural Circuits, 2022, 16, .	1.4	13
27	Postnatal signalling with homeoprotein transcription factors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130518.	1.8	11
28	Immunoprecipitation and mass spectrometry identify non-cell autonomous Otx2 homeoprotein in the granular and supragranular layers of mouse visual cortex. F1000Research, 2014, 3, 178.	0.8	10
29	OTX2 Non-Cell Autonomous Activity Regulates Inner Retinal Function. ENeuro, 2020, 7, ENEURO.0012-19.2020.	0.9	9
30	Choroid plexus APP regulates adult brain proliferation and animal behavior. Life Science Alliance, 2021, 4, e202000703.	1.3	7
31	Choroid plexus trophic factors in the developing and adult brain. Frontiers in Biology, 2016, 11, 214-221.	0.7	5
32	OTX2 Homeoprotein Functions in Adult Choroid Plexus. International Journal of Molecular Sciences, 2021, 22, 8951.	1.8	4
33	Colicin E1 forms a dimer after urea-induced unfolding. Biochemical Journal, 1999, 340, 631.	1.7	1
34	014 Diurnal changes in perineuronal nets and parvalbumin neurons in the rat medial prefrontal cortex. Sleep, 2021, 44, A7-A8.	0.6	1
35	Shuttling Homeoproteins and Their Biological Significance. Methods in Molecular Biology, 2022, 2383, 33-44.	0.4	1
36	Editorial: Matrix Proteins. Seminars in Cell and Developmental Biology, 2019, 89, 99.	2.3	0