
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8591062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glucose Sensing for Diabetes Monitoring: Recent Developments. Sensors, 2017, 17, 1866.	3.8	546
2	All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly(vinyl chloride) membrane with a polypyrrole solid contact. Analytical Chemistry, 1992, 64, 2496-2501.	6.5	402
3	Smartphone-Based Simultaneous pH and Nitrite Colorimetric Determination for Paper Microfluidic Devices. Analytical Chemistry, 2014, 86, 9554-9562.	6.5	348
4	BIOTEX—Biosensing Textiles for Personalised Healthcare Management. IEEE Transactions on Information Technology in Biomedicine, 2010, 14, 364-370.	3.2	274
5	Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon, 2011, 49, 3488-3496.	10.3	260
6	Development of a volatile amine sensor for the monitoring of fish spoilage. Talanta, 2006, 69, 515-520.	5.5	250
7	Advances in wearable chemical sensor design for monitoring biological fluids. Sensors and Actuators B: Chemical, 2015, 211, 403-418.	7.8	249
8	Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. Journal of Materials Chemistry, 2012, 22, 4440.	6.7	248
9	Chloride Selective Calix[4]arene Optical Sensor Combining Urea Functionality with Pyrene Excimer Transduction. Journal of the American Chemical Society, 2006, 128, 8607-8614.	13.7	241
10	Wireless Sensor Networks and Chemo-/Biosensing. Chemical Reviews, 2008, 108, 652-679.	47.7	233
11	Calixarene-based sensing agents. Chemical Society Reviews, 1996, 25, 15.	38.1	230
12	Screen-printed electrodes for environmental monitoring of heavy metal ions: a review. Mikrochimica Acta, 2016, 183, 503-517.	5.0	227
13	A wearable electrochemical sensor for the real-time measurement of sweat sodium concentration. Analytical Methods, 2010, 2, 342.	2.7	226
14	Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. Journal of Hazardous Materials, 2009, 171, 1168-1171.	12.4	207
15	Smart Nanotextiles: A Review of Materials and Applications. MRS Bulletin, 2007, 32, 434-442.	3.5	195
16	Bio-sensing textile based patch with integrated optical detection system for sweat monitoring. Sensors and Actuators B: Chemical, 2009, 139, 231-236.	7.8	189
17	Humidity sensors based on polyaniline nanofibres. Sensors and Actuators B: Chemical, 2010, 143, 530-534.	7.8	179
18	Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids. Sensors and Actuators B: Chemical, 2012, 171-172, 1327-1334.	7.8	174

#	Article	IF	CITATIONS
19	Chemo/bio-sensor networks. Nature Materials, 2006, 5, 421-424.	27.5	170
20	Peer Reviewed: Calixarenes: Designer Ligands for Chemical Sensors. Analytical Chemistry, 2001, 73, 22 A-29 A.	6.5	164
21	Determination and application of ion-selective electrode model parameters using flow injection and simplex optimization. Analyst, The, 1994, 119, 749.	3.5	155
22	Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices. Sensors, 2008, 8, 2453-2479.	3.8	152
23	Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine) film. Biosensors and Bioelectronics, 2004, 20, 367-377.	10.1	144
24	Molecular Design of Light-Responsive Hydrogels, For in Situ Generation of Fast and Reversible Valves for Microfluidic Applications. Chemistry of Materials, 2015, 27, 5925-5931.	6.7	141
25	Development and Application of Surface Plasmon Resonance-Based Biosensors for the Detection of Cell–Ligand Interactions. Analytical Biochemistry, 2000, 281, 135-143.	2.4	140
26	Sodium-selective polymeric membrane electrodes based on calix[4]arene ionophores. Analyst, The, 1989, 114, 1551.	3.5	130
27	Inherently conducting polymer modified polyurethane smart foam for pressure sensing. Sensors and Actuators A: Physical, 2005, 119, 398-404.	4.1	129
28	A wearable patch for continuous monitoring of sweat electrolytes during exertion. Lab on A Chip, 2018, 18, 2632-2641.	6.0	122
29	â€~SWEATCH': A Wearable Platform for Harvesting and Analysing Sweat Sodium Content. Electroanalysis, 2016, 28, 1283-1289.	2.9	117
30	Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline composite. Journal of Power Sources, 2011, 196, 4842-4848.	7.8	115
31	Ion sensors: current limits and new trends. Analytica Chimica Acta, 1999, 393, 11-18.	5.4	114
32	Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications. Biomicrofluidics, 2014, 8, 052112.	2.4	114
33	Design and development of a miniaturised total chemical analysis system for on-line lactate and glucose monitoring in biological samples. Analytica Chimica Acta, 1997, 346, 341-349.	5.4	110
34	Electrochemical transistors with ionic liquids for enzymatic sensing. Chemical Communications, 2010, 46, 7972.	4.1	110
35	Lead-Selective Electrodes Based on Calixarene Phosphine Oxide Derivatives. Analytical Chemistry, 1999, 71, 5544-5550.	6.5	108
36	Spiropyran based hydrogels actuators—Walking in the light. Sensors and Actuators B: Chemical, 2017, 250, 608-616.	7.8	105

3

#	Article	IF	CITATIONS
37	Opportunities and challenges of using ion-selective electrodes in environmental monitoring and wearable sensors. Electrochimica Acta, 2012, 84, 29-34.	5.2	104
38	Caesium-selective poly(vinyl chloride) membrane electrodes based on calix[6]arene esters. Analyst, The, 1990, 115, 1207.	3.5	103
39	Photoâ€Responsive Polymeric Structures Based on Spiropyran. Macromolecular Materials and Engineering, 2012, 297, 1148-1159.	3.6	102
40	Concept and development of an autonomous wearable micro-fluidic platform for real time pH sweat analysis. Sensors and Actuators B: Chemical, 2012, 175, 263-270.	7.8	101
41	A Multiswitchable Poly(terthiophene) Bearing a Spiropyran Functionality: Understanding Photo- and Electrochemical Control. Journal of the American Chemical Society, 2011, 133, 5453-5462.	13.7	96
42	lonogel-based light-actuated valves for controlling liquid flow in micro-fluidic manifolds. Lab on A Chip, 2010, 10, 195-201.	6.0	94
43	Optically addressable single-use microfluidic valves by laser printer lithography. Lab on A Chip, 2010, 10, 2680.	6.0	93
44	Determination of the Enantiomeric Composition of Chiral Amines Based on the Quenching of the Fluorescence of a Chiral Calixarene. Analytical Chemistry, 1996, 68, 3775-3782.	6.5	91
45	Direct Laser Writing of Four-Dimensional Structural Color Microactuators Using a Photonic Photoresist. ACS Nano, 2020, 14, 9832-9839.	14.6	89
46	Inâ€Situ One‧tep Electrochemical Preparation of Graphene Oxide Nanosheetâ€Modified Electrodes for Biosensors. ChemSusChem, 2011, 4, 1587-1591.	6.8	83
47	Self-protonating spiropyran-co-NIPAM-co-acrylic acid hydrogel photoactuators. Soft Matter, 2013, 9, 8754.	2.7	83
48	Chemical sensing using an integrated microfluidic system based on the Berthelot reaction. Sensors and Actuators B: Chemical, 2001, 76, 235-243.	7.8	81
49	Development of miniature all-solid-state potentiometric sensing system. Sensors and Actuators B: Chemical, 2010, 146, 199-205.	7.8	80
50	Fast prototyping of paper-based microfluidic devices by contact stamping using indelible ink. RSC Advances, 2013, 3, 18811.	3.6	80
51	An Electrochromic Ionic Liquid: Design, Characterization, and Performance in a Solid-State Platform. ACS Applied Materials & Interfaces, 2013, 5, 55-62.	8.0	80
52	Peer Reviewed: Internet-Scale Sensing. Analytical Chemistry, 2004, 76, 278 A-286 A.	6.5	79
53	The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors. Analytical and Bioanalytical Chemistry, 2010, 398, 1575-1589.	3.7	79
54	A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta, 2020, 219, 121145.	5.5	79

#	Article	IF	CITATIONS
55	Photo-regenerable surface with potential for optical sensing. Journal of Materials Chemistry, 2006, 16, 1332.	6.7	77
56	Novel fused-LEDs devices as optical sensors for colorimetric analysis. Talanta, 2004, 63, 167-173.	5.5	76
57	Digital imaging as a detector for generic analytical measurements. TrAC - Trends in Analytical Chemistry, 2000, 19, 517-522.	11.4	75
58	Stimuli Responsive Ionogels for Sensing Applications—An Overview. Membranes, 2012, 2, 16-39.	3.0	75
59	A low-cost autonomous optical sensor for water quality monitoring. Talanta, 2015, 132, 520-527.	5.5	75
60	A low-cost optical sensing device based on paired emitter–detector light emitting diodes. Analytica Chimica Acta, 2006, 557, 111-116.	5.4	74
61	Spiropyran-based reversible, light-modulated sensing with reduced photofatigue. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 206, 109-115.	3.9	74
62	Guidelines for Improving the Lower Detection Limit of Ion-Selective Electrodes: A Systematic Approach. Electroanalysis, 2007, 19, 144-154.	2.9	73
63	Nonlinear calibration of ion-selective electrode arrays for flow injection analysis. Analytical Chemistry, 1992, 64, 1721-1728.	6.5	68
64	Autonomous microfluidic system for phosphate detection. Talanta, 2007, 71, 1180-1185.	5.5	66
65	Spiropyran Polymeric Microcapillary Coatings for Photodetection of Solvent Polarity. Langmuir, 2013, 29, 2790-2797.	3.5	66
66	Evaluation of miniaturised solid state reference electrodes on a silicon based component. Sensors and Actuators B: Chemical, 1997, 44, 389-396.	7.8	65
67	The determination of phosphorus in a microfluidic manifold demonstrating long-term reagent lifetime and chemical stability utilising a colorimetric method. Sensors and Actuators B: Chemical, 2003, 90, 170-174.	7.8	64
68	Photoâ€Chemopropulsion – Lightâ€Stimulated Movement of Microdroplets. Advanced Materials, 2014, 26, 7339-7345.	21.0	64
69	Photoswitchable Ratchet Surface Topographies Based on Self-Protonating Spiropyran–NIPAAM Hydrogels. ACS Applied Materials & Interfaces, 2014, 6, 7268-7274.	8.0	64
70	Light-responsive polymers for microfluidic applications. Lab on A Chip, 2018, 18, 699-709.	6.0	64
71	Dual contactless conductivity and amperometric detection on hybrid PDMS/glass electrophoresis microchips. Analyst, The, 2010, 135, 96-103.	3.5	63
72	An integrated sensing and wireless communications platform for sensing sodium in sweat. Analytical Methods, 2016, 8, 64-71.	2.7	61

#	Article	IF	CITATIONS
73	Modeling of potentiometric electrode arrays for multicomponent analysis. Analytical Chemistry, 1991, 63, 876-882.	6.5	60
74	Tuning and Enhancing Enantioselective Quenching of Calixarene Hosts by Chiral Guest Amines. Analytical Chemistry, 2002, 74, 59-66.	6.5	60
75	Monitoring of headspace total volatile basic nitrogen from selected fish species using reflectance spectroscopic measurements of pH sensitive films. Analyst, The, 2002, 127, 1338-1341.	3.5	60
76	Determination of phosphate using a highly sensitive paired emitter–detector diode photometric flow detector. Analytica Chimica Acta, 2007, 597, 290-294.	5.4	60
77	Electrochemical synthesis of WO3/PANI composite for electrocatalytic reduction of iodate. Electrochimica Acta, 2010, 55, 3915-3920.	5.2	60
78	Fully automated, low-cost ion chromatography system for in-situ analysis of nitrite and nitrate in natural waters. Talanta, 2020, 216, 120955.	5.5	60
79	Chiral resolution of the enantiomers of phenylglycinol using (S)-di-naphthylprolinol calix[4]arene by capillary electrophoresis and fluorescence spectroscopy. Analytical Communications, 1998, 35, 123-125.	2.2	59
80	Photometric detection in flow analysis systems using integrated PEDDs. Talanta, 2005, 66, 1340-1344.	5.5	59
81	pH-controlled morphological structure of polyaniline during electrochemical deposition. Electrochimica Acta, 2009, 54, 6172-6177.	5.2	59
82	Integration of analytical measurements and wireless communications—Current issues and future strategies. Talanta, 2008, 75, 606-612.	5.5	58
83	Monitoring chemical plumes in an environmental sensing chamber with a wireless chemical sensor network. Sensors and Actuators B: Chemical, 2007, 121, 142-149.	7.8	57
84	Optical sensing system based on wireless paired emitter detector diode device and ionogels for lab-on-a-disc water quality analysis. Lab on A Chip, 2012, 12, 5069.	6.0	57
85	A portable centrifugal analyser for liver function screening. Biosensors and Bioelectronics, 2014, 56, 352-358.	10.1	57
86	Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon poly(ionic liquid)s. Materials Today, 2018, 21, 807-816.	14.2	57
87	Optical Sensor for Gaseous Ammonia With Tuneable Sensitivity. Analyst, The, 1997, 122, 803-806.	3.5	56
88	Modular microfluidic valve structures based on reversible thermoresponsive ionogel actuators. Lab on A Chip, 2014, 14, 3530-3538.	6.0	55
89	A potentiometric disposable sensor strip for measuring pH in saliva. Electrochimica Acta, 2014, 132, 292-296.	5.2	55
90	Solid-state ammonia sensor based on Berthelot's reaction. Sensors and Actuators B: Chemical, 2004, 98, 12-17.	7.8	54

#	Article	IF	CITATIONS
91	Polystyrene bead-based system for optical sensing using spiropyran photoswitches. Journal of Materials Chemistry, 2008, 18, 5063.	6.7	54
92	Textile-Based Wearable Sensors for Assisting Sports Performance. , 2009, , .		54
93	Monitoring of volatile bases in fish sample headspace using an acidochromic dye. Food Chemistry, 2000, 69, 97-103.	8.2	53
94	Towards autonomous environmental monitoring systems. Talanta, 2002, 56, 355-363.	5.5	53
95	Point-of-need diagnosis of cystic fibrosis using a potentiometric ion-selective electrode array. Analyst, The, 2000, 125, 2264-2267.	3.5	52
96	Portable integrated microfluidic analytical platform for the monitoring and detection of nitrite. Talanta, 2013, 116, 997-1004.	5.5	52
97	Improved nitrate sensing using ion selective electrodes based on urea–calixarene ionophores. New Journal of Chemistry, 2007, 31, 587-592.	2.8	51
98	Ionic Liquidâ€Based, Liquidâ€Junctionâ€Free Reference Electrode. Electroanalysis, 2011, 23, 1881-1890.	2.9	51
99	Thermoresponsive poly(ionic liquid) hydrogels. Chemical Communications, 2013, 49, 10308.	4.1	51
100	Thermal reversion of spirooxazine in ionic liquids containing the [NTf2]â^' anion. Physical Chemistry Chemical Physics, 2009, 11, 5608.	2.8	49
101	Dynamic pH mapping in microfluidic devices by integrating adaptive coatings based on polyaniline with colorimetric imaging techniques. Lab on A Chip, 2013, 13, 1079.	6.0	49
102	A Wearable Device for Monitoring Sweat Rates via Image Analysis. IEEE Transactions on Biomedical Engineering, 2016, 63, 1672-1680.	4.2	49
103	Challenges and opportunities in wearable technology for biochemical analysis in sweat. Current Opinion in Electrochemistry, 2017, 3, 46-50.	4.8	49
104	Moving Droplets in 3D Using Light. Advanced Materials, 2018, 30, e1801821.	21.0	49
105	Big data and machine learning for materials science. Discover Materials, 2021, 1, 12.	2.8	49
106	Performance characteristics of a polypyrrole modified polydimethylsiloxane (PDMS) membrane based microfluidic pump. Sensors and Actuators A: Physical, 2008, 148, 239-244.	4.1	46
107	Photo- and solvatochromic properties of nitrobenzospiropyran in ionic liquids containing the [NTf2]aˆ² anion. Physical Chemistry Chemical Physics, 2008, 10, 5919.	2.8	46
108	Disposable solid-contact ion-selective electrodes for environmental monitoring of lead with ppb limit-of-detection. Electrochimica Acta, 2012, 73, 93-97.	5.2	46

#	Article	IF	CITATIONS
109	Neural network based recognition of flow injection patterns. Analyst, The, 1993, 118, 347.	3.5	45
110	An Autonomous Microfluidic Sensor for Phosphate: On-Site Analysis of Treated Wastewater. IEEE Sensors Journal, 2008, 8, 508-515.	4.7	45
111	Synthesis and characterisation of spiropyran-polymer brushes in micro-capillaries: Towards an integrated optical sensor for continuous flow analysis. Sensors and Actuators B: Chemical, 2012, 175, 92-99.	7.8	45
112	Biomimetic, low power pumps based on soft actuators. Sensors and Actuators A: Physical, 2007, 135, 229-235.	4.1	44
113	Evaluation of Liquid―and Solid ontact, Pb ²⁺ â€Selective Polymerâ€Membrane Electrodes for Soil Analysis. Electroanalysis, 2008, 20, 340-346.	2.9	44
114	Materials science and the sensor revolution. Materials Today, 2010, 13, 16-23.	14.2	44
115	The development of an autonomous sensing platform for the monitoring of ammonia in water using a simplified Berthelot method. Analytical Methods, 2014, 6, 7606-7614.	2.7	44
116	Diagnostic of functionality of polymer membrane – based ion selective electrodes by impedance spectroscopy. Analytical Methods, 2010, 2, 1490.	2.7	43
117	Ion selective electrodes in environmental analysis. Journal of the Serbian Chemical Society, 2013, 78, 1729-1761.	0.8	43
118	Quantitative colorimetric analysis of dye mixtures using an optical photometer based on LED array. Sensors and Actuators B: Chemical, 2006, 114, 819-825.	7.8	42
119	Wearable Platform for Realâ€ŧime Monitoring of Sodium in Sweat. ChemPhysChem, 2018, 19, 1531-1536.	2.1	42
120	Evaluation of a low cost wireless chemical sensor network for environmental monitoring. , 2008, , .		41
121	Calixarenes as active agents for chemical sensors. Sensors and Actuators B: Chemical, 1991, 4, 325-331.	7.8	40
122	LED switching of spiropyran-doped polymer films. Journal of Materials Science, 2006, 41, 5841-5844.	3.7	40
123	Photonic modulation of surface properties: a novel concept in chemical sensing. Journal Physics D: Applied Physics, 2007, 40, 7238-7244.	2.8	40
124	Precision control of flow rate in microfluidic channels using photoresponsive soft polymer actuators. Lab on A Chip, 2017, 17, 2013-2021.	6.0	40
125	Robust estimation of selectivity coefficients using multivariate calibration of ion-selective electrode arrays. Analytica Chimica Acta, 1993, 276, 75-86.	5.4	39
126	Inkjet printed LED based pH chemical sensor for gas sensing. Analytica Chimica Acta, 2009, 652, 308-314.	5.4	39

#	Article	IF	CITATIONS
127	Photo-patternable hybrid ionogels for electrochromic applications. Journal of Materials Chemistry, 2011, 21, 8687.	6.7	39
128	Autonomous reagent-based microfluidic pH sensor platform. Sensors and Actuators B: Chemical, 2016, 225, 369-376.	7.8	39
129	Enantioselective molecular sensing of aromatic amines using tetra-(S)-di-2-naphthylprolinol calix[4]arene. Analyst, The, 2001, 126, 1063-1067.	3.5	38
130	Spiropyran modified micro-fluidic chip channels as photonically controlled self-indicating system for metal ion accumulation and release. Sensors and Actuators B: Chemical, 2009, 140, 295-303.	7.8	38
131	Characterisation and analytical potential of a photo-responsive polymeric material based on spiropyran. Biosensors and Bioelectronics, 2010, 26, 1392-1398.	10.1	38
132	Swelling and shrinking behaviour of photoresponsive phosphonium-based ionogel microstructures. Sensors and Actuators B: Chemical, 2014, 194, 105-113.	7.8	38
133	Integrated 3D printed heaters for microfluidic applications: Ammonium analysis within environmental water. Analytica Chimica Acta, 2020, 1098, 94-101.	5.4	38
134	Sodium-selective electrodes based on triester monoacid derivatives of p-tert-butylcalix[4]arene. Comparison with tetraester calix[4]arene ionophores. Analytica Chimica Acta, 1996, 336, 1-12.	5.4	37
135	Pump Less Wearable Microfluidic Device for Real Time pH Sweat Monitoring. Procedia Chemistry, 2009, 1, 1103-1106.	0.7	37
136	CMAS: fully integrated portable centrifugal microfluidic analysis system for on-site colorimetric analysis. RSC Advances, 2013, 3, 15928.	3.6	37
137	Evaluation of a new solid-state reference electrode junction material for ion-selective electrodes. Electroanalysis, 1994, 6, 962-971.	2.9	36
138	An improved Na+â€selective microelectrode for intracellular measurements in plant cells. Journal of Experimental Botany, 2001, 52, 1353-1359.	4.8	36
139	Low pressure ion chromatography with a low cost paired emitter–detector diode based detector for the determination of alkaline earth metals in water samples. Analytica Chimica Acta, 2006, 577, 32-37.	5.4	36
140	Trace-Level Determination of Cs+ Using Membrane-Based Ion-Selective Electrodes. Electroanalysis, 2006, 18, 1379-1388.	2.9	36
141	Novel chromogenic ligands for lithium and sodium based on calix[4]arene tetraesters. Journal of the Chemical Society Chemical Communications, 1992, , 1287.	2.0	35
142	Development of a low cost microfluidic sensor for the direct determination of nitrate using chromotropic acid in natural waters. Analytical Methods, 2015, 7, 5396-5405.	2.7	35
143	Ionic liquid modulation of swelling and LCST behavior of N-isopropylacrylamide polymer gels. Physical Chemistry Chemical Physics, 2014, 16, 3610.	2.8	33
144	Tuning microfluidic flow by pulsed light oscillating spiropyran-based polymer hydrogel valves. Sensors and Actuators B: Chemical, 2017, 245, 81-86.	7.8	33

#	Article	IF	CITATIONS
145	Calixarene-based sensing agents. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1994, 19, 149-166.	1.6	32
146	Assessment of a chromogenic calix[4]arene for the rapid colorimetric detection of trimethylamine. Journal of Materials Chemistry, 1994, 4, 217.	6.7	32
147	Ion-selective optode membranes using 9-(4-diethylamino-2-octadecanoatestyryl)-acridine acidochromic dye. Analytica Chimica Acta, 1999, 398, 1-11.	5.4	32
148	Separation of transition metals on a poly-iminodiacetic acid grafted polymeric resin column with post-column reaction detection utilising a paired emitter–detector diode system. Journal of Chromatography A, 2008, 1213, 31-36.	3.7	32
149	Synthesis and characterisation of controllably functionalised polyaniline nanofibres. Synthetic Metals, 2009, 159, 741-748.	3.9	32
150	Investigating Nanostructuring within Imidazolium Ionic Liquids: A Thermodynamic Study Using Photochromic Molecular Probes. Journal of Physical Chemistry B, 2009, 113, 15589-15596.	2.6	32
151	Textile sensors to measure sweat pH and sweat-rate during exercise. , 2009, , .		32
152	Novel integrated paired emitter-detector diode (PEDD) as a miniaturized photometric detector in HPLC. Analyst, The, 2006, 131, 938.	3.5	31
153	Controlled Transport of Droplets Using Conducting Polymers. Langmuir, 2009, 25, 11137-11141.	3.5	31
154	Self-propelled chemotactic ionic liquid droplets. Chemical Communications, 2015, 51, 2342-2344.	4.1	31
155	Porous self-protonating spiropyran-based NIPAAm gels with improved reswelling kinetics. Journal of Materials Science, 2016, 51, 1392-1399.	3.7	31
156	Water based-ionic liquid carbon dioxide sensor for applications in the food industry. Sensors and Actuators B: Chemical, 2017, 253, 302-309.	7.8	31
157	Low cost 235 nm ultra-violet light-emitting diode-based absorbance detector for application in a portable ion chromatography system for nitrite and nitrate monitoring. Journal of Chromatography A, 2019, 1603, 8-14.	3.7	31
158	Electrochemical codeposition of nickel oxide and polyaniline. Journal of Solid State Electrochemistry, 2010, 14, 1-7.	2.5	30
159	Progress in sensor array research. Electroanalysis, 1993, 5, 795-802.	2.9	29
160	A novel calix[4]arene tetraester with fluorescent response to complexation with alkali metal cations. Journal of the Chemical Society Chemical Communications, 1993, , 480-483.	2.0	29
161	Electrochemically-induced fluid movement using polypyrrole. Synthetic Metals, 2005, 151, 60-64.	3.9	29
162	Paired emitter-detector light emitting diodes for the measurement of lead(II) and cadmium(II). Analytica Chimica Acta, 2006, 569, 221-226.	5.4	29

#	Article	IF	CITATIONS
163	Increased response/recovery lifetimes and reinforcement of polyaniline nanofiber films using carbon nanotubes. Carbon, 2012, 50, 1447-1454.	10.3	29
164	Probing the specific ion effects of biocompatible hydrated choline ionic liquids on lactate oxidase biofunctionality in sensor applications. Physical Chemistry Chemical Physics, 2014, 16, 1841-1849.	2.8	29
165	Enhanced Antifouling Properties of Carbohydrate Coated Poly(ether sulfone) Membranes. ACS Applied Materials & Interfaces, 2015, 7, 17238-17246.	8.0	29
166	Xurography actuated valving for centrifugal flow control. Lab on A Chip, 2016, 16, 3454-3459.	6.0	29
167	Assessment of three azophenol calix[4]arenes as chromogenic ligands for optical detection of alkali metal ions. Analyst, The, 1993, 118, 1127.	3.5	28
168	Comparison of the analytical capabilities of an amperometric and an optical sensor for the determination of nitrate in river and well water. Analytica Chimica Acta, 1994, 299, 81-90.	5.4	28
169	Ammonium detection using an ion-selective electrode array in flow-injection analysis. Electroanalysis, 1994, 6, 9-16.	2.9	28
170	Voltammetric Detection for Capillary Electrophoresis. Analytical Chemistry, 1997, 69, 2994-3001.	6.5	28
171	CO2 laser microfabrication of an integrated polymer microfluidic manifold for the determination of phosphorus. Lab on A Chip, 2003, 3, 221.	6.0	28
172	Web-based real-time temperature monitoring of shellfish catches using a wireless sensor network. Sensors and Actuators A: Physical, 2005, 122, 222-230.	4.1	28
173	Portable X-Ray Fluorescence as a Rapid Technique for Surveying Elemental Distributions in Soil. Spectroscopy Letters, 2013, 46, 516-526.	1.0	28
174	A liquid-junction-free reference electrode based on a PEDOT solid-contact and ionogel capping membrane. Talanta, 2014, 125, 58-64.	5.5	28
175	A prototype industrial sensing system for phosphorus based on micro system technology. Analyst, The, 2002, 127, 1-4.	3.5	27
176	Analysis of river water samples utilising a prototype industrial sensing system for phosphorus based on micro-system technology. Journal of Environmental Monitoring, 2002, 4, 767-771.	2.1	27
177	Swelling and Shrinking Properties of Thermo-Responsive Polymeric Ionic Liquid Hydrogels with Embedded Linear pNIPAAM. International Journal of Molecular Sciences, 2014, 15, 5337-5349.	4.1	27
178	Poly(Ionic Liquid) Semi-Interpenetrating Network Multi-Responsive Hydrogels. Sensors, 2016, 16, 219.	3.8	27
179	Poly(ionic liquid) thermo-responsive hydrogel microfluidic actuators. Sensors and Actuators B: Chemical, 2017, 247, 749-755.	7.8	27
180	Driving flows in microfluidic paper-based analytical devices with a cholinium based poly(ionic liquid) hydrogel. Sensors and Actuators B: Chemical, 2018, 261, 372-378.	7.8	27

#	Article	IF	CITATIONS
181	In Vitro Optimisation of a Microdialysis System With Potential for On-line Monitoring of Lactate and Glucose in Biological Samples. Analyst, The, 1997, 122, 185-189.	3.5	26
182	Assessment of sodium-selective ion-selective electrodes based on methyl ketone derivative ofp-tert-butylcalix[4]arene. Electroanalysis, 1991, 3, 371-375.	2.9	25
183	Solid-state sodium-selective sensors based on screen-printed Ag/AgCl reference electrodes. Electroanalysis, 1997, 9, 1318-1324.	2.9	25
184	Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform. Sensors, 2006, 6, 848-859.	3.8	25
185	Wearable sensors for monitoring sports performance and training. , 2008, , .		25
186	Wireless Ion-Selective Electrode Autonomous Sensing System. IEEE Sensors Journal, 2011, 11, 2374-2382.	4.7	25
187	Paper based electronic tongue $\hat{a} \in$ a low-cost solution for the distinction of sugar type and apple juice brand. Analyst, The, 2019, 144, 2827-2832.	3.5	25
188	Chromogenic ligands for lithium based on calix[4]arene tetraesters bearing nitrophenol residues. Journal of the Chemical Society Perkin Transactions II, 1993, , 1963.	0.9	24
189	Fast electrophoretic analysis of individual mitochondria using microchip capillary electrophoresis with laser induced fluorescence detection. Lab on A Chip, 2006, 6, 1007.	6.0	24
190	Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures. Journal of Materials Chemistry, 2012, 22, 10552.	6.7	24
191	Impedance spectroscopy for monosaccharides detection using responsive hydrogel modified paper-based electrodes. Analyst, The, 2017, 142, 1133-1139.	3.5	24
192	Miniaturized capillary ion chromatograph with UV lightâ€emitting diode based indirect absorbance detection for anion analysis in potable and environmental waters. Journal of Separation Science, 2018, 41, 3224-3231.	2.5	24
193	Analysis of sodium in blood plasma using a new mini ion-selective electrode. Analytical Proceedings, 1989, 26, 29.	0.4	23
194	Progress in the realisation of an autonomous environmental monitoring device for ammonia. TrAC - Trends in Analytical Chemistry, 2002, 21, 816-827.	11.4	23
195	Wireless aquatic navigator for detection and analysis (WANDA). Sensors and Actuators B: Chemical, 2010, 150, 425-435.	7.8	23
196	Photochromic imidazolium based ionic liquids based on spiropyran. Physical Chemistry Chemical Physics, 2010, 12, 7009.	2.8	23
197	Wearable Bio and Chemical Sensors. , 2014, , 65-83.		23
198	Smartphone based meat freshness detection. Talanta, 2020, 216, 120985.	5.5	23

#	Article	IF	CITATIONS
199	Photochromism of nitrobenzospiropyran in phosphonium based ionic liquids. Physical Chemistry Chemical Physics, 2009, 11, 7286.	2.8	22
200	Polymerisation and surface modification of methacrylate monoliths in polyimide channels and polyimide coated capillaries using 660 nm light emitting diodes. Journal of Chromatography A, 2011, 1218, 2954-2962.	3.7	22
201	Integrated flow analysis platform for the direct detection of nitrate in water using a simplified chromotropic acid method. Analytical Methods, 2013, 5, 4798.	2.7	22
202	Integrating stimulus responsive materials and microfluidics: The key to next-generation chemical sensors. Journal of Intelligent Material Systems and Structures, 2013, 24, 2221-2238.	2.5	22
203	Inverted poly(vinyl chloride)–liquid membrane ion-selective electrodes for high-speed batch injection potentiometric analysis. Analyst, The, 1993, 118, 1131-1135.	3.5	21
204	Potentiometric Nonlinear Multivariate Calibration with Genetic Algorithm and Simplex Optimization. Analytical Chemistry, 1997, 69, 1909-1918.	6.5	21
205	Solid-State Ion-Selective Electrode Arrays. Electroanalysis, 1998, 10, 1096-1100.	2.9	21
206	Microchip micellar electrokinetic chromatography coupled with electrochemical detection for analysis of synthetic oestrogen mimicking compounds. Analytica Chimica Acta, 2005, 550, 107-115.	5.4	21
207	Designer molecular probes for phosphonium ionic liquids. Physical Chemistry Chemical Physics, 2010, 12, 1895.	2.8	21
208	A two-component polymeric optode membrane based on a multifunctional ionic liquid. Analyst, The, 2011, 136, 348-353.	3.5	21
209	Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics. Sensors, 2016, 16, 1402.	3.8	21
210	3D Printing of Metallic Microstructured Mould Using Selective Laser Melting for Injection Moulding of Plastic Microfluidic Devices. Micromachines, 2019, 10, 595.	2.9	21
211	Flow-injection analysis with tetrameric calixarene-based potentiometric detection. Analytica Chimica Acta, 1991, 251, 149-155.	5.4	20
212	Self-assembled solvato-morphologically controlled photochromic crystals. Chemical Communications, 2014, 50, 924-926.	4.1	20
213	Multicomponent batch-injection analysis using an array of ion-selective electrodes. Analytica Chimica Acta, 1993, 281, 629-635.	5.4	19
214	An all solid-state reference electrode based on a potassium chloride doped vinyl ester resin. Analytical Proceedings, 1995, 32, 319.	0.4	19
215	Development of an autonomous, wireless pH and temperature sensing system for monitoring pig meat quality. Meat Science, 2005, 70, 329-336.	5.5	19
216	Bio-sensing textiles - Wearable Chemical Biosensors for Health Monitoring. , 2007, , 35-39.		19

#	Article	IF	CITATIONS
217	Wearable technology for bio-chemical analysis of body fluids during exercise. , 2008, 2008, 5741-4.		19
218	Polyaniline nanofibres as templates for the covalent immobilisation of biomolecules. Synthetic Metals, 2011, 161, 285-292.	3.9	19
219	The optimisation of a paired emitter–detector diode optical pH sensing device. Sensors and Actuators B: Chemical, 2011, 153, 182-187.	7.8	19
220	A sleep bruxism detection system based on sensors in a splint – pilot clinical data. Journal of Oral Rehabilitation, 2015, 42, 34-39.	3.0	19
221	A colorimetric method for use within portable test kits for nitrate determination in various water matrices. Analytical Methods, 2017, 9, 680-687.	2.7	19
222	Novel synthesis and characterisation of 3,3-dimethyl-5′-(2-benzothiazolyl)-spironaphth(indoline-2,3′-[3H]naphth[2,1-b] [1,4]oxazine) derivatives. Tetrahedron Letters, 2009, 50, 2573-2576.	1.4	18
223	Electronic structure calculations and physicochemical experiments quantify the competitive liquid ion association and probe stabilisation effects for nitrobenzospiropyran in phosphonium-based ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 6156.	2.8	18
224	Self-maintained colorimetric acid/base sensor using polypyrrole actuator. Sensors and Actuators B: Chemical, 2008, 129, 518-524.	7.8	17
225	Paired emitter–detector diode detection with dual wavelength monitoring for enhanced sensitivity to transition metals in ion chromatography with post-column reaction. Analyst, The, 2009, 134, 124-130.	3.5	17
226	Remote Real-Time Monitoring of Subsurface Landfill Gas Migration. Sensors, 2011, 11, 6603-6628.	3.8	17
227	Mechanical Properties and UV Curing Behavior of Poly(<i>N</i> â€Isopropylacrylamide) in Phosphoniumâ€Based Ionic Liquids. Macromolecular Chemistry and Physics, 2013, 214, 787-796.	2.2	17
228	Temperature and pH triggered release characteristics of water/fluorescein from 1-ethyl-3-methylimidazolium ethylsulfate based ionogels. Chemical Communications, 2013, 49, 4613.	4.1	17
229	Comparison of a calixarene-based ion-selective electrode with two automated analyzers for the clinical determination of sodium in blood plasma. Journal of Pharmaceutical and Biomedical Analysis, 1990, 8, 695-700.	2.8	16
230	The use of differential measurements with a glucose biosensor for interference compensation during glucose determinations by flow injection analysis. Biosensors and Bioelectronics, 1995, 10, 937-943.	10.1	16
231	Solid-Contact Ion-Selective Electrodes (ISEs) based on Ligand Functionalised Gold Nanoparticles. Electrochimica Acta, 2015, 159, 158-165.	5.2	16
232	Medical applications of smartÂtextiles. , 2016, , 215-237.		16
233	Fluorescent Probes for Sugar Detection. ACS Applied Materials & amp; Interfaces, 2018, 10, 38431-38437.	8.0	16
234	Characteristics of a europium-selective electrode based on a calix[4]arene tetraphosphine oxide. Analytical Proceedings, 1995, 32, 471.	0.4	15

#	Article	IF	CITATIONS
235	Varying solvent polarity to tune the enantioselective quenching of a calixarene host. Journal of Materials Chemistry, 2005, 15, 307.	6.7	15
236	Development of a Calix[4]arene Sensor for Soft Metals Based on Nitrile Functionality. Supramolecular Chemistry, 2006, 18, 515-522.	1.2	15
237	Preparation and sensor evaluation of a Pacman phthalocyanine. Tetrahedron Letters, 2007, 48, 9003-9007.	1.4	15
238	Wearable electrochemical sensors for monitoring performance athletes. Proceedings of SPIE, 2011, , .	0.8	15
239	A merocyanine-based conductive polymer. Journal of Materials Chemistry C, 2013, 1, 3913.	5.5	15
240	Solvato-morphologically controlled, reversible NIPAAm hydrogel photoactuators. RSC Advances, 2016, 6, 83296-83302.	3.6	15
241	Reusable ionogel-based photo-actuators in a lab-on-a-disc. Sensors and Actuators B: Chemical, 2018, 257, 963-970.	7.8	15
242	Adsorptive stripping voltammetric determination of pipemidic acid in human urine. Analyst, The, 1990, 115, 1215.	3.5	14
243	Development of a computer controlled multichannel potentiostat for applications with flowing solution analysis. Analytica Chimica Acta, 1995, 305, 347-358.	5.4	14
244	Non-linear carbon dioxide determination using infrared gas sensors and neural networks with Bayesian regularization. Sensors and Actuators B: Chemical, 2009, 136, 242-247.	7.8	14
245	Physicochemical study of spiropyran–terthiophene derivatives: photochemistry and thermodynamics. Physical Chemistry Chemical Physics, 2012, 14, 9112.	2.8	14
246	Electrotactic ionic liquid droplets. Sensors and Actuators B: Chemical, 2017, 239, 1069-1075.	7.8	14
247	Micro-Capillary Coatings Based on Spiropyran Polymeric Brushes for Metal Ion Binding, Detection, and Release in Continuous Flow. Sensors, 2018, 18, 1083.	3.8	14
248	Modelling of the Sodium Complex of a Calixarene Tetraester in the 1,3-Alternate Conformation. Journal of Molecular Modeling, 1998, 4, 259-267.	1.8	13
249	Comparison of the performance of calix[4]arene phosphine oxide and ester derivatives in ion-selective optode membranes. Analytical Communications, 1998, 35, 127-131.	2.2	13
250	Photochromic spiropyran monolithic polymers: Molecular photo-controllable electroosmotic pumps for micro-fluidic devices. Sensors and Actuators B: Chemical, 2010, 148, 569-576.	7.8	13
251	Characteristics of a Piezo-Resistive Fabric Stretch Sensor Glove for Home-Monitoring of Rheumatoid Arthritis. , 2014, , .		13
252	Photoswitchable Layer-by-Layer Coatings Based on Photochromic Polynorbornenes Bearing Spiropyran Side Groups. Langmuir, 2018, 34, 4210-4216.	3.5	13

#	Article	IF	CITATIONS
253	Development of a Cost-Effective Sensing Platform for Monitoring Phosphate in Natural Waters. Chemosensors, 2018, 6, 57.	3.6	13
254	Resistance measurements as a simple diagnostic tool for ion-selective electrode performance. Electroanalysis, 1990, 2, 113-117.	2.9	12
255	Covalent attachment of functional side-groups to polyaniline nanofibres. International Journal of Nanomanufacturing, 2010, 5, 88.	0.3	12
256	The use of scanning contactless conductivity detection for the characterisation of stationary phases in micro-fluidic chips. Lab on A Chip, 2010, 10, 1777.	6.0	12
257	Magnetic Ionogels (MagIGs) Based on Iron Oxide Nanoparticles, Poly(<i>N</i> â€isopropylacrylamide), and the Ionic Liquid Trihexyl(tetradecyl)phosphonium Dicyanamide. European Journal of Inorganic Chemistry, 2012, 2012, 5245-5251.	2.0	12
258	Polyaniline coated micro-capillaries for continuous flow analysis of aqueous solutions. Analytica Chimica Acta, 2013, 759, 1-7.	5.4	12
259	New fluoroionophores for alkali-metal cations based on tetrameric calixarenes. Journal of Materials Chemistry, 1994, 4, 145-151.	6.7	11
260	Molecular Modeling of Calixarenes with Group I Metal Ions. Journal of Molecular Modeling, 1998, 4, 44-52.	1.8	11
261	Modelling Metal Complexes of Calixarene Esters and Phosphine Oxides Using Molecular Mechanics. Journal of Molecular Modeling, 2000, 6, 272-281.	1.8	11
262	Bayesian Methods for Ion Selective Electrodes. Electroanalysis, 2012, 24, 316-324.	2.9	11
263	Determination of stability constants using genetic algorithms. Analytica Chimica Acta, 1995, 316, 347-362.	5.4	10
264	Characterisation of the ester-substituted products of the reaction of p-t-butyl calix[4]arene and ethyl bromoacetate using LC-UV-MS and LC-DAD. Talanta, 2002, 57, 1119-1132.	5.5	10
265	Internet-scale Sensing: Are Biomimetic Approaches the Answer?. Journal of Intelligent Material Systems and Structures, 2007, 18, 159-164.	2.5	10
266	Autonomous field-deployable device for the measurement of phosphate in natural water. , 2007, , .		10
267	In situ monitoring of environmental water quality using an autonomous microfluidic sensor. , 2010, , ·		10
268	Fibers and Fabrics for Chemical and Biological Sensing. Research Journal of Textile and Apparel, 2010, 14, 63-72.	1.1	9
269	Web-based monitoring of year-length deployments of autonomous gas sensing platforms on landfill sites. , 2011, , .		9
270	Optical switching of protein interactions on photosensitive–electroactive polymers measured by atomic force microscopy. Journal of Materials Chemistry B, 2013, 1, 2162.	5.8	9

#	Article	IF	CITATIONS
271	Textile chemiresistors with sensitive layers based on polymer ionic liquids: Applicability for detection of toxic gases and chemical warfare agents. Sensors and Actuators B: Chemical, 2018, 266, 830-840.	7.8	9
272	Smart Packaging Technologies for Fish and Seafood Products. , 2008, , 75-98.		8
273	Wearable technology for the real-time analysis of sweat during exercise. , 2008, , .		8
274	Development of wireless bruxism monitoring device based on pressure-sensitive polymer composite. Sensors and Actuators A: Physical, 2010, 163, 486-492.	4.1	8
275	3D Printed Sugarâ€6ensing Hydrogels. Macromolecular Rapid Communications, 2020, 41, e1900610.	3.9	8
276	Virtual instrument for flow-injection analysis with sensor array detection. Analytical Proceedings, 1994, 31, 229.	0.4	7
277	Highlight. Miniaturized chemical sensors. Analytical Communications, 1996, 33, 1H.	2.2	7
278	Detection of nitrite by flow injection analysis using a novel paired emitter-detector diode (PEDD) as a photometric detector. Proceedings of SPIE, 2007, 6755, 106.	0.8	7
279	Introducing Quality Control in the Chemistry Teaching Laboratory Using Control Charts. Journal of Chemical Education, 2009, 86, 1085.	2.3	7
280	Photoreversible ion-binding using spiropyran modified silica microbeads. International Journal of Nanomanufacturing, 2010, 5, 38.	0.3	7
281	Adaptive coatings based on polyaniline for direct 2D observation of diffusion processes in microfluidic systems. Sensors and Actuators B: Chemical, 2016, 231, 744-751.	7.8	7
282	Temperature logging of fish catches using autonomous sensing units. Trends in Food Science and Technology, 2000, 11, 291-295.	15.1	6
283	Cation Binding Selectivity of Partially Substituted Calix[4]arene Esters. Electroanalysis, 2002, 14, 1397-1404.	2.9	6
284	Identification and Recovery of an Asymmetric Calix[4]arene Tetranitrile Derivative using Liquid Chromatography and Mass Spectrometry. Supramolecular Chemistry, 2005, 17, 393-399.	1.2	6
285	Chapter 2 Ion-selective electrodes in trace level analysis of heavy metals: Potentiometry for the XXI century. Comprehensive Analytical Chemistry, 2007, 49, 25-52.	1.3	6
286	A Wireless Sensor Network for Monitoring Water Treatment. , 2007, , .		6
287	On-Body Chemical Sensors for Monitoring Sweat. Lecture Notes in Electrical Engineering, 2010, , 177-193.	0.4	6
288	Synthesis and Characterization of 1â€Vinylimidazolium Alkyl Sulfate Polymeric Ionic Liquids. Macromolecular Chemistry and Physics, 2014, 215, 1889-1895.	2.2	6

#	Article	IF	CITATIONS
289	Solid-phase test reagent for determination of nitrite and nitrate. Analytical Methods, 2016, 8, 6520-6528.	2.7	6
290	Dual Droplet Functionality: Phototaxis and Photopolymerization. ACS Applied Materials & 2019; Interfaces, 2019, 11, 31484-31489.	8.0	6
291	Photoswitchable Stationary Phase Based on Packed Spiropyran Functionalized Silica Microbeads. E-Journal of Surface Science and Nanotechnology, 2009, 7, 649-652.	0.4	5
292	Environmental monitoring of Galway Bay: fusing data from remote and in-situ sources. , 2009, , .		5
293	Photo-Detection of Solvent Polarities using Non-Invasive Coatings in Capillaries. Procedia Engineering, 2011, 25, 1545-1548.	1.2	5
294	Recent Progress in Disposable Ion-Selective Sensors for Environmental Applications. Advances in Science and Technology, 0, , .	0.2	5
295	Fabrication of Rugged and Reliable Fluidic Chips for Autonomous Environmental Analyzers Using Combined Thermal and Pressure Bonding of Polymethyl Methacrylate Layers. ACS Omega, 2019, 4, 21131-21140.	3.5	5
296	Obtaining and processing data from laboratory instruments. TrAC - Trends in Analytical Chemistry, 1993, 12, 1-3.	11.4	4
297	Smart packaging for the monitoring of fish freshness. Proceedings of SPIE, 2005, , .	0.8	4
298	Special section on wireless sensor networks. Talanta, 2008, 75, 605-605.	5.5	4
299	Fabrication of Microfluidic Pump Using Conducting Polymer Actuator. , 2008, , .		4
300	Development of optical sensing system for detection of Fe ions using conductive polymer actuator based microfluidic pump. , 2008, , .		4
301	Simple Barcode System Based on Inonogels for Real Time pH-Sweat Monitoring. , 2010, , .		4
302	New cost-effective, interoperable sensors tested on existing ocean observing platforms in application of European directives: The COMMON SENSE European project. , 2015, , .		4
303	Nutrient Analysis in Arctic Waters Using a Portable Sensing Platform. Frontiers in Sensors, 2021, 2, .	3.3	4
304	Obtaining and processing data from laboratory instruments. TrAC - Trends in Analytical Chemistry, 1993, 12, 37-40.	11.4	3
305	Sensor node localisation using a stereo camera rig. , 2007, , .		3

Field-deployable microfluidic sensor for phosphate in natural waters. , 2007, , .

307 Chemical event tracking using a low-cost wireless chemical sensing network, 2003, 3 308 Molecules with Multiple Personalities How Switchable Materials Could Revolutionize Chemical 0.5 3 309 Molecules with Multiple Personalities How Switchable Materials Could Revolutionize Chemical 0.5 3 309 Multiple Resonance of frequency detection of graph simplified polymeric membranes based on a multifunctional low Budd Electrochims, etc., 2011, 56, 8477 3933. 6.2 3 310 Autonomous analyser platforms for remote monitoring of water quality, 2011, 3 3 311 Distributed Environmental Monitoring. Springer Series on Chemical Sensors and Biosensors, 2012, 0.0 9 9 312 COMMON SENSE: Co-t-effective sensors, interoperable with international existing ocean observing withered Environmental Monitoring. Springer Series on Chemical Sensors and Biosensors, 2012, 0.0 9 9 314 INTERNET-SCALE CHEMICAL SENSING: IS IT MORE THAN A VISION7, 2006, 121-146. 9 9 315 Digital Imaging as a detector for quantitative colorimetric analyses, 2001, 4205, 267. 2 2 314 INTERNET-SCALE CHEMICAL SENSING: IS IT MORE THAN A VISION7, 2006, 121-146. 9.3 2 2 315 Ogital Imaging as a detector for quantitative colorimetric analyses, 2001, 4205,	#	Article	IF	CITATIONS
308 Sensing, ECS Transactions, 2009, 19, 199-210. Ud 3 309 Wireless radio frequency detection of greatly simplified polymeric membranes based on a multifunctional tonic liquid. Electrochimica Acta, 2011, 56, 8947-8953. 5.2 3 310 Autonomous analyser platforms for remote monitoring of water quality., 2011, 5 311 Distributed Environmental Monitoring. Springer Series on Chemical Sensors and Biosensors, 2012, 0.5 3 3112 Schudowi SENSE: Cost effective sensors, interoperable with international existing ocean observing systems, to meet EU policies requirements., 2014, 3 3131 Towards an autonomous microfiluide sensor for dissolved carbon dioxide determination. 4.5 3 3132 Digital imaging as a detector for quantitative colorimetric analyses, 2001, 4205, 267. 2 2 3135 Digital imaging as a detector for quantitative colorimetric analyses, 2001, 4205, 267. 2 2 314 INTERNET-SCALE CHEMICAL SENSINC: IS IT MORE THAN A VISION?., 2006, 2 2 314 Digital imaging as a detector for quantitative colorimetric analyses, 2001, 4205, 267. 2 2 315 Digital imaging as a detector for quantitative colorimetric analyses, 2001, 20, 1. 2 2 316 Mireless-based Monitor	307	Chemical event tracking using a low-cost wireless chemical sensing network. , 2008, , .		3
300 multifunctional lonic liquid. Electrochimics Acta, 2011, 56, 8947-8953. 5-2 3 310 Autonomous analyser platforms for remote monitoring of water quality., 2011, , . 8 311 Distributed Environmental Monitoring. Springer Series on Chemical Sensors and Biosensors, 2012, 0.5 3 311 S21-363. 0.5 3 312 COMMON SENSE: Cost-effective sensors, interoperable with international existing ocean observing systems, to meet EU policies requirements., 2014, 3 313 Towards an autonomous microfluidic sensor for dissolved carbon dioxide determination. 4.5 3 314 INTERNET-SCALE CHEMICAL SENSING: IS IT MORE THAN A VISION?, 2006, , 121-146. a 315 Digital imaging as a detector for quantitative colorimetric analyses., 2001, 4205, 267. 2 316 ABaseline Study of Metal Ion Content of Irish Canals by ICP-MS. International Journal of Environmental Analytical Chemistry, 2003, 83, 713-725. 3.3 2 317 Web-based colorimetric sensing for food quality monitoring., 2006, 2 2 318 Wireless-based Monitoring of Body Movements Using Wearable Sensors. Materials Research Society Symposia Proceedings, 2009, 1240, 1. 2 317 Web-based colorimetric sensing for food quality monitoring., 2006, 2 2 <	308	Molecules with Multiple Personalities: How Switchable Materials Could Revolutionize Chemical Sensing. ECS Transactions, 2009, 19, 199-210.	0.5	3
311 Distributed Environmental Monitoring. Springer Series on Chemical Sensors and Biosensors, 2012, , , 20,5 3 312 COMMON SENSE: Cost-effective sensors, interoperable with international existing ocean observing systems, to meet EU policies requirements. , 2014, , . 3 313 Towards an autonomous microfluidic sensor for dissolved carbon dioxide determination. 4.5 3 313 Towards an autonomous microfluidic sensor for dissolved carbon dioxide determination. 4.5 3 314 INTERNET-SCALE CHEMICAL SENSING: IS IT MORE THAN A VISION?, 2006, , 121-146. 3 315 Digital imaging as a detector for quantitative colorimetric analyses. , 2001, 4205, 267. 2 316 Environmental Analytical Chemistry, 2003, 83, 713-725. 2 317 Web-based colorimetric sensing for food quality monitoring. , 2006, 2 318 Wireless-based Monitoring of Body Movements Using Wearable Sensors. Materials Research Society Symposia 0.1 2 319 Controllable Chemical Analytication of Polyaniline Nanofibres. Materials Research Society Symposia 0.1 2 319 Schizophrenic Molecules and Materials Research Society Symposia 0.1 2 320 Controllable Chemical Modification of Polyaniline Nanofibres. How Materials Science could Recolutionise How we do Chemical Sensing. Materials R	309		5.2	3
311 221363. 0.00 3 312 COMMON SENSE: Cost-effective sensors, interoperable with international existing ocean observing systems, to meet EU policies requirements., 2014, , . 3 313 Towards an autonomous microfluidic sensor for dissolved carbon dioxide determination. 4.5 3 314 INTERNET-SCALE CHEMICAL SENSING: IS IT MORE THAN A VISION?, 2006, , 121-146. 3 315 Digital imaging as a detector for quantitative colorimetric analyses., 2001, 4205, 267. 2 316 A Baseline Study of Metal Ion Content of Irish Canals by ICP-MS. International Journal of Environmental Analytical Chemistry, 2003, 83, 713-725. 3.3 2 317 Web based colorimetric sensing for food quality monitoring., 2006, , . 2 2 318 Wireless-based Monitoring of Body Movements Using Wearable Sensors. Materials Research Society Symposia Proceedings, 2006, 920, 1. 2 319 Automatic reaction to a chemical event detected by a low-cost wireless chemical sensing network. , 2009, 2 320 Controllable Chemical Modification of Polyaniline Nanofibres. Materials Research Society Symposia 0.1 2 321 Schizophrenic Molecules and Materials Sensing. Materials Research Society Symposia Proceedings, 2009, 1.26. 0.1 2 322 Incorporation of Acrylate Based Spiropyran	310	Autonomous analyser platforms for remote monitoring of water quality. , 2011, , .		3
312 systems, to meet EU policies requirements. , 2014, , . 3 313 Towards an autonomous microfluidic sensor for dissolved carbon dioxide determination. 4.5 3 314 INTERNET-SCALE CHEMICAL SENSINC: IS IT MORE THAN A VISION?. , 2006, , 121-146. 3 315 Digital imaging as a detector for quantitative colorimetric analyses. , 2001, 4205, 267. 2 316 A Baseline Study of Metal Ion Content of Irish Canals by ICP-MS. International Journal of Environmental Analytical Chemistry, 2003, 83, 713-725. 3.3 2 317 Web-based colorimetric sensing for food quality monitoring. , 2006, , . 2 2 318 Wireless-based Monitoring of Body Movements Using Wearable Sensors. Materials Research Society Symposia Proceedings, 2006, 920, 1. 2 319 Automatic reaction to a chemical event detected by a low-cost wireless chemical sensing network. , 2009, , . 2 320 Controllable Chemical Modification of Polyaniline Nanofibres. Materials Research Society Symposia 0.1 2 321 Revolutions et New we do Chemical Sensing. Materials Research Society Symposia Proceedings, 2009, 12:40, 1. 2 322 Incorporation of Acrylate Based Spiropyran Monoliths in Micro-Fluidic Devices for Photo-Controlled Diag. Advances in Science and Technology, 0, . 0.2 2 322 Incorporation o	311		0.5	3
313 Microchemical Journal, 2018, 139, 216-221. 4-3 3 314 INTERNET-SCALE CHEMICAL SENSING: IS IT MORE THAN A VISION?., 2006, , 121-146. 3 315 Digital imaging as a detector for quantitative colorimetric analyses., 2001, 4205, 267. 2 316 A Baseline Study of Metal Ion Content of Irish Canals by ICP-MS. International Journal of Environmental Analytical Chemistry, 2003, 83, 713-725. 3.3 2 317 Web based colorimetric sensing for food quality monitoring., 2006, , . 2 318 Wireless-based Monitoring of Body Movements Using Wearable Sensors. Materials Research Society Symposia Proceedings, 2006, 920, 1. 0.1 2 319 Automatic reaction to a chemical event detected by a low-cost wireless chemical sensing network., 2009, 2 320 Controllable Chemical Modification of Polyaniline Nanofibres. Materials Research Society Symposia Proceedings, 2009, 1240, 1 2 321 Revolutionse How we do Chemical Sensing, Materials Research Society Symposia Proceedings, 2009, 1240, 1 2 322 Incorporation of Acrylate Based Spiropyran Monoliths in Micro-Fluidic Devices for Photo-Controlled Electroosmotic Flow. Advances in Science and Technology, 0, 0.2 2 322 Biomimetics and materials with multiple personalities - The foundation of next generation molecular 0.2 2 </td <td>312</td> <td>COMMON SENSE: Cost-effective sensors, interoperable with international existing ocean observing systems, to meet EU policies requirements. , 2014, , .</td> <td></td> <td>3</td>	312	COMMON SENSE: Cost-effective sensors, interoperable with international existing ocean observing systems, to meet EU policies requirements. , 2014, , .		3
315Digital imaging as a detector for quantitative colorimetric analyses., 2001, 4205, 267.2316A Baseline Study of Metal Ion Content of Irish Canals by ICP-MS. International Journal of Environmental Analytical Chemistry, 2003, 83, 713-725.3.32317Web-based colorimetric sensing for food quality monitoring., 2006, ,.2318Wireless-based Monitoring of Body Movements Using Wearable Sensors. Materials Research Society Symposia Proceedings, 2006, 920, 1.0.12319Automatic reaction to a chemical event detected by a low-cost wireless chemical sensing network. , 2009, ,.2320Controllable Chemical Modification of Polyaniline Nanofibres. Materials Research Society Symposia Proceedings, 2009, 1240, 1.0.12321Schizophrenic Molecules and Materials with Multiple Personalities - How Materials Science could Revolutionise How we do Chemical Sensing. Materials Research Society Symposia Proceedings, 2009, 1190, 126.0.12322Incorporation of Acrylate Based Spiropyran Monoliths in Micro-Fluidic Devices for Photo-Controlled Electroosmotic Flow. Advances in Science and Technology, 0,0.22323Biomimetics and materials with multiple personalities - The foundation of next generation molecular0.22	313		4.5	3
316A Baseline Study of Metal Ion Content of Irish Canals by ICP-MS. International Journal of Environmental Analytical Chemistry, 2003, 83, 713-725.3.32317Web-based colorimetric sensing for food quality monitoring., 2006, , .2318Wireless-based Monitoring of Body Movements Using Wearable Sensors. Materials Research Society Symposia Proceedings, 2006, 920, 1.0.12319Automatic reaction to a chemical event detected by a low-cost wireless chemical sensing network. , 2009, , .2320Controllable Chemical Modification of Polyaniline Nanofibres. Materials Research Society Symposia Proceedings, 2009, 1240, 1.0.12321Schizophrenic Molecules and Materials with Multiple Personalities - How Materials Science could Revolutionise How we do Chemical Sensing. Materials Research Society Symposia Proceedings, 2009, 1240, 1.2322Incorporation of Acrylate Based Spiropyran Monoliths in Micro-Fluidic Devices for Photo-Controlled Electroosmotic Flow. Advances in Science and Technology, 0, , .0.22323Biomimetics and materials with multiple personalities - The foundation of next generation molecular0.22	314	INTERNET-SCALE CHEMICAL SENSING: IS IT MORE THAN A VISION?. , 2006, , 121-146.		3
316Environmental Ánalytical Chemistry, 2003, 83, 713-725.3.32317Web-based colorimetric sensing for food quality monitoring., 2006, , .2318Wireless-based Monitoring of Body Movements Using Wearable Sensors. Materials Research Society0.12319Automatic reaction to a chemical event detected by a low-cost wireless chemical sensing network., 2009, , .2320Controllable Chemical Modification of Polyaniline Nanofibres. Materials Research Society Symposia0.12321Revolutionise How we do Chemical Sensing. Materials Research Society Symposia0.12321Revolutionise How we do Chemical Sensing. Materials Research Society Symposia Proceedings, 2009, 1240, 1.2322Incorporation of Acrylate Based Spiropyran Monoliths in Micro-Fluidic Devices for Photo-Controlled Electroosmotic Flow. Advances in Science and Technology, 0, .0.22323Biomimetics and materials with multiple personalities - The foundation of next generation molecular0.22	315	Digital imaging as a detector for quantitative colorimetric analyses. , 2001, 4205, 267.		2
318 Wireless-based Monitoring of Body Movements Using Wearable Sensors. Materials Research Society 0.1 2 319 Automatic reaction to a chemical event detected by a low-cost wireless chemical sensing network., 2 320 Controllable Chemical Modification of Polyaniline Nanofibres. Materials Research Society Symposia 0.1 2 321 Schizophrenic Molecules and Materials with Multiple Personalities - How Materials Science could 0.1 2 322 Incorporation of Acrylate Based Spiropyran Monoliths in Micro-Fluidic Devices for Photo-Controlled 0.2 2 322 Biomimetics and materials with multiple personalities - The foundation of next generation molecular 0.2 2	316		3.3	2
318 Symposia Proceedings, 2006, 920, 1. 0.1 2 319 Automatic reaction to a chemical event detected by a low-cost wireless chemical sensing network. , 2009, , . 2 320 Controllable Chemical Modification of Polyaniline Nanofibres. Materials Research Society Symposia 0.1 2 320 Controllable Chemical Modification of Polyaniline Nanofibres. Materials Research Society Symposia 0.1 2 321 Schizophrenic Molecules and Materials with Multiple Personalities - How Materials Science could Revolutionise How we do Chemical Sensing. Materials Research Society Symposia Proceedings, 2009, 0.1 2 322 Incorporation of Acrylate Based Spiropyran Monoliths in Micro-Fluidic Devices for Photo-Controlled Electroosmotic Flow. Advances in Science and Technology, 0, , . 0.2 2 323 Biomimetics and materials with multiple personalities - The foundation of next generation molecular 0.2 2	317	Web-based colorimetric sensing for food quality monitoring. , 2006, , .		2
3192009,,.2320Controllable Chemical Modification of Polyaniline Nanofibres. Materials Research Society Symposia0.12320Controllable Chemical Modification of Polyaniline Nanofibres. Materials Research Society Symposia0.12321Schizophrenic Molecules and Materials with Multiple Personalities - How Materials Science could Revolutionise How we do Chemical Sensing. Materials Research Society Symposia Proceedings, 2009, 1190, 126.0.12322Incorporation of Acrylate Based Spiropyran Monoliths in Micro-Fluidic Devices for Photo-Controlled Electroosmotic Flow. Advances in Science and Technology, 0, .0.22323Biomimetics and materials with multiple personalities - The foundation of next generation molecular0.22	318		0.1	2
320 Proceedings, 2009, 1240, 1. 0.1 2 321 Schizophrenic Molecules and Materials with Multiple Personalities - How Materials Science could Revolutionise How we do Chemical Sensing. Materials Research Society Symposia Proceedings, 2009, 1190, 126. 0.1 2 322 Incorporation of Acrylate Based Spiropyran Monoliths in Micro-Fluidic Devices for Photo-Controlled Electroosmotic Flow. Advances in Science and Technology, 0, , . 0.2 2 323 Biomimetics and materials with multiple personalities - The foundation of next generation molecular 0.2 2	319			2
321 Revolutionise How we do Chemical Sensing. Materials Research Society Symposia Proceedings, 2009, 1190, 126. 0.1 2 322 Incorporation of Acrylate Based Spiropyran Monoliths in Micro-Fluidic Devices for Photo-Controlled Electroosmotic Flow. Advances in Science and Technology, 0, , . 0.2 2 323 Biomimetics and materials with multiple personalities - The foundation of next generation molecular 0.2 2	320		0.1	2
Electroosmotic Flow. Advances in Science and Technology, 0, , . Biomimetics and materials with multiple personalities - The foundation of next generation molecular	321	Revolutionise How we do Chemical Sensing. Materials Research Society Symposia Proceedings, 2009,	0.1	2
	322		0.2	2
sensing devices. , 2010, , .	323	Biomimetics and materials with multiple personalities - The foundation of next generation molecular sensing devices. , 2010, , .		2

#	Article	IF	CITATIONS
325	Modified Polyaniline Nanofibres for Ascorbic Acid Detection. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	2
326	Wearable chemical sensors: Characterization of heart rate electrodes using electrochemical impedance spectroscopy. , 2015, , .		2
327	Real-time Analysis of Electrolytes in Sweat Through a Wearable Sensing Platform. Proceedings (mdpi), 2019, 15, 14.	0.2	2
328	Fluidic Platforms Incorporating Photo-Responsive Soft-Polymers Based on Spiropyran: From Green Synthesis to Precision Flow Control. Frontiers in Materials, 2021, 7, .	2.4	2
329	5′,6-Dichloro-1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline]. Acta Crystallographica Section Structure Reports Online, 2008, 64, o1430-o1431.	E;.2	2
330	Opto-Smart Systems in Microfluidics. Advances in Chemical and Materials Engineering Book Series, 2016, , 265-288.	0.3	2
331	â€~My Sweat my Health': Real Time Sweat Analysis Using Wearable Micro-fluidic Devices. , 2011, , .		2
332	Analysis of blood sodium using flow injection analysis with a calix[4]arene potentiometric detector. Analytical Proceedings, 1995, 32, 365.	0.4	1
333	<title>Novel generic approach to reliable rapid analytical and bioanalytical measurements</title> . , 1999, , .		1
334	An improved Na + â€selective microelectrode for intracellular measurements in plant cells. Journal of Experimental Botany, 2001, 52, 1353-1359.	4.8	1
335	Sensor Applications. , 2001, , 627-641.		1
336	Beads-Based System for Optical Sensing Using Spiropyran Photoswitches. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 4096-7.	0.5	1
337	Polypyrrole Based Switchable Filter System. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 4090-1.	0.5	1
338	Electrochemical transistors with ionic liquids for enzymatic sensing. Proceedings of SPIE, 2011, , .	0.8	1
339	Stimuli-Controlled Fluid Control and Microvehicle Movement in Microfluidic Channels. , 2017, , .		1
340	Boronic Acid Homopolymers as Effective Polycations for Sugar-Responsive Layer-by-Layer Assemblies. ACS Applied Polymer Materials, 2019, 1, 990-996.	4.4	1
341	Grand Challenges and Opportunities in Sensor Science and Technology. Frontiers in Sensors, 2020, 1, .	3.3	1
342	Emerging technologies for autonomous in-situ monitoring of water quality. , 2021, , 19-55.		1

#	Article	IF	CITATIONS
343	Optimization of the optical detection in a polymer-fabricated microfluidic manifold for the determination of phosphorus. , 2003, 4876, 856.		Ο
344	Photo-switchable surfaces: a new approach to chemical sensing. , 2007, , .		0
345	Procedure 2 Determination of cesium in natural waters using polymer-based ion-selective electrodes. Comprehensive Analytical Chemistry, 2007, 49, e13-e20.	1.3	Ο
346	Ion-selective electrodes with polypyrrole- and poly(3-octylthiophene)-mediated internal solid contact in soil analysis. , 2007, , .		0
347	Intelligent Environmental Sensing with a Phosphate Monitoring System and Online Resources. AIP Conference Proceedings, 2007, , .	0.4	Ο
348	Integration of Miniature, Ultrasensitive Chemical Sensors in Microfluidic Devices. ECS Meeting Abstracts, 2009, , .	0.0	0
349	Distributed sensing device for monitoring marine environment. , 2011, , .		0
350	On-Body Chemo/Bio-Sensing - Opportunities and Challenges. Advances in Science and Technology, 0, , .	0.2	0
351	Wearable Sensor for Real-Time Monitoring of Electrolytes in Sweat. Proceedings (mdpi), 2017, 1, 724.	0.2	0
352	Stimuli-Controlled Manipulation of Synthetic Micrometre-Sized Vehicles for Bio-Inspired Fluidics. Proceedings (mdpi), 2017, 1, .	0.2	0
353	Stimuli-Responsive Materials and Biomimetic Fluidics: Fundamental Building Blocks of Chemical Sensing Platforms with Futuristic Capabilities. Proceedings (mdpi), 2017, 1, 769.	0.2	0
354	Stimuli-Controlled Fluid Control and Microvehicle Movement in Microfluidic Channels. , 2022, , 128-157.		0
355	Calixarene-Based Sensing Agents. , 1994, , 149-166.		0
356	Recognition, Transduction and Immobilisation — a Holistic Approach to Sensor Development. , 1997, , 91-104.		0