Malik Zaka Ullah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8590833/publications.pdf

Version: 2024-02-01

			1269	907	16	58389	
131		96		33		53	
papers	citat	ions		h-index		g-index	
			Ξ				
133	1	33		133		1155	
all docs		tations		times ranked		citing authors	
						8	

#	Article	IF	CITATIONS
1	Dynamics of COVIDâ€19 via singular and nonâ€singular fractional operators under real statistical observations. Mathematical Methods in the Applied Sciences, 2024, 47, 3079-3100.	2.3	6
2	LBCEPred: a machine learning model to predict linear B-cell epitopes. Briefings in Bioinformatics, 2022, 23, .	6.5	14
3	Using Matrix Eigenvalues to Construct an Iterative Method with the Highest Possible Efficiency Index Two. Mathematics, 2022, 10, 1370.	2.2	0
4	Repercussions of unreported populace on disease dynamics and its optimal control through system of fractional order delay differential equations. Chaos, Solitons and Fractals, 2022, 158, 111997.	5.1	5
5	Numerical Treatment for 3D Squeezed Flow in a Rotating Channel With Soret and Dufour Effects. Frontiers in Physics, 2021, 8, .	2.1	17
6	On model for Darcy–Forchheimer 3D nanofluid flow subject to heat flux boundary condition. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2411-2418.	3.6	6
7	A new approach on the modelling, chaos control and synchronization of a fractional biological oscillator. Advances in Difference Equations, 2021, 2021, .	3.5	8
8	Analysis of entropy generation on peristaltic phenomena of MHD slip flow of viscous fluid in a diverging tube. Case Studies in Thermal Engineering, 2021, 23, 100817.	5.7	37
9	Withdrawal Notice: Identification of Chaperone Proteins by Integration of PseAAC and Statistical Moments. Letters in Organic Chemistry, 2021, 18, .	0.5	O
10	A new fractional SICA model and numerical method for the transmission of HIV/AIDS. Mathematical Methods in the Applied Sciences, 2021, 44, 8648-8659.	2.3	11
11	Caputo SIR model for COVID-19 under optimized fractional order. Advances in Difference Equations, 2021, 2021, 185.	3.5	23
12	A new fourth-order integrable nonlinear equation: breather, rogue waves, other lump interaction phenomena, and conservation laws. Advances in Difference Equations, 2021, 2021, .	3.5	5
13	Numerical simulation for bio-convective flow of Sutterby nanofluid by a rotating disk. Physica Scripta, 2021, 96, 084007.	2.5	4
14	Transmissibility of epidemic diseases caused by delay with local proportional fractional derivative. Advances in Difference Equations, 2021, 2021, .	3.5	4
15	Conductivity and energy change in Carreau nanofluid flow along with magnetic dipole and Darcy-Forchheimer relation. AEJ - Alexandria Engineering Journal, 2021, 60, 3565-3575.	6.4	14
16	Hybrid nanofluid flow in a Darcy-Forchheimer permeable medium over a flat plate due to solar radiation. Case Studies in Thermal Engineering, 2021, 26, 100955.	5.7	62
17	Managing the risk based on entropic value-at-risk under a normal-Rayleigh distribution. Applied Mathematics and Computation, 2021, 402, 126129.	2.2	2
18	Electromagnetic couple stress film flow of hybrid nanofluid over an unsteady rotating disc. International Communications in Heat and Mass Transfer, 2021, 127, 105562.	5.6	42

#	Article	IF	Citations
19	4mC-RF: Improving the prediction of 4mC sites using composition and position relative features and statistical moment. Analytical Biochemistry, 2021, 633, 114385.	2.4	16
20	Thermo-bioconvection in stagnation point flow of third-grade nanofluid towards a stretching cylinder involving motile microorganisms. Physica Scripta, 2021, 96, 035208.	2.5	11
21	Identification of stress response proteins through fusion of machine learning models and statistical paradigms. Scientific Reports, 2021, 11, 21767.	3.3	8
22	A New Inversion-Free Iterative Scheme to Compute Maximal and Minimal Solutions of a Nonlinear Matrix Equation. Mathematics, 2021, 9, 2994.	2.2	1
23	Multiple Slip Impact on the Darcy–Forchheimer Hybrid Nano Fluid Flow Due to Quadratic Convection Past an Inclined Plane. Mathematics, 2021, 9, 2934.	2.2	3
24	Couple Stress Hybrid Nanofluid Flow through a Converging-Diverging Channel. Journal of Nanomaterials, 2021, 2021, 1-13.	2.7	10
25	An RBF-FD sparse scheme to simulate high-dimensional Black–Scholes partial differential equations. Computers and Mathematics With Applications, 2020, 79, 426-439.	2.7	12
26	Significance of heat generation/absorption in three-dimensional flow of Prandtl nanofluid with convectively heated surface. Physica Scripta, 2020, 95, 015703.	2.5	4
27	MHD thin film flow of kerosene oil based CNTs nanofluid under the influence of Marangoni convection. Physica Scripta, 2020, 95, 015702.	2.5	15
28	THIN FILM FLOW OF CNTs NANOFLUID OVER A THIN NEEDLE SURFACE. Surface Review and Letters, 2020, 27, 1950189.	1.1	2
29	Significance of Arrhenius activation energy in Darcy–Forchheimer 3D rotating flow of nanofluid with radiative heat transfer. Physica A: Statistical Mechanics and Its Applications, 2020, 550, 124024.	2.6	23
30	A new fractional study on the chaotic vibration and state-feedback control of a nonlinear suspension system. Chaos, Solitons and Fractals, 2020, 132, 109530.	5.1	8
31	A Numerical Simulation for Darcy-Forchheimer Flow of Nanofluid by a Rotating Disk With Partial Slip Effects. Frontiers in Physics, 2020, 7, .	2.1	29
32	Influences of electrical MHD and Hall current on squeezing nanofluid flow inside rotating porous plates with viscous and joule dissipation effects. Journal of Thermal Analysis and Calorimetry, 2020, 140, 1215-1227.	3.6	54
33	A Geometric Obstruction for CR-Slant Warped Products in a Nearly Cosymplectic Manifold. Mathematics, 2020, 8, 1622.	2.2	0
34	A new generalization of the fractional Euler–Lagrange equation for a vertical mass-spring-damper. JVC/Journal of Vibration and Control, 2020, , 107754632096168.	2.6	4
35	An efficient numerical scheme for analyzing bioconvection in von-Kármán flow of third-grade nanofluid with motile microorganisms. AEJ - Alexandria Engineering Journal, 2020, 59, 2739-2752.	6.4	25
36	Impact of higher-order effects on dissipative soliton in metamaterials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126744.	2.1	2

#	Article	IF	CITATIONS
37	A new type of equation of motion and numerical method for a harmonic oscillator with left and right fractional derivatives. Chinese Journal of Physics, 2020, 68, 712-722.	3.9	5
38	Some High-Order Iterative Methods for Nonlinear Models Originating from Real Life Problems. Mathematics, 2020, 8, 1249.	2.2	1
39	Importance of multiple slips on bioconvection flow of cross nanofluid past a wedge with gyrotactic motile microorganisms. Case Studies in Thermal Engineering, 2020, 22, 100798.	5.7	32
40	Analysis of water driven CNTs along an axisymmetric surface with viscous dissipation effect. Case Studies in Thermal Engineering, 2020, 22, 100779.	5.7	3
41	Influence of thermal-solutal stratifications and thermal aspects of non-linear radiation in stagnation point Oldroyd-B nanofluid flow. International Communications in Heat and Mass Transfer, 2020, 116 , 104636 .	5.6	38
42	Numerical study for slip flow of Reiner-Rivlin nanofluid due to a rotating disk. International Communications in Heat and Mass Transfer, 2020, 116, 104643.	5.6	27
43	Entropy Generation in MHD Second-Grade Nanofluid Thin Film Flow Containing CNTs with Cattaneo-Christov Heat Flux Model Past an Unsteady Stretching Sheet. Applied Sciences (Switzerland), 2020, 10, 2720.	2.5	32
44	Sequence-based Identification of Allergen Proteins Developed by Integration of PseAAC and Statistical Moments via 5-Step Rule. Current Bioinformatics, 2020, 15, 1046-1055.	1.5	41
45	Significance of activation energy and Wu's slip features in Cross nanofluid with motile microorganisms. Communications in Theoretical Physics, 2020, 72, 105001.	2.5	10
46	The unsteady liquid film flow of the carbon nanotubes engine oil nanofluid over a non-linear radially extending surface. Thermal Science, 2020, 24, 951-963.	1,1	5
47	Interpretation of Chemical Reactions and Activation Energy for Unsteady 3D Flow of Eyring–Powell Magneto-Nanofluid. Arabian Journal for Science and Engineering, 2019, 44, 579-589.	3.0	20
48	Numerical Solution of Heston-Hull-White Three-Dimensional PDE with a High Order FD Scheme. Mathematics, 2019, 7, 704.	2.2	4
49	Thermal Performance of the Graphene Oxide Nanofluids Flow in an Upright Channel Through a Permeable Medium. IEEE Access, 2019, 7, 102345-102355.	4.2	18
50	Darcy–Forchheimer Radiative Flow of Micropoler CNT Nanofluid in Rotating Frame with Convective Heat Generation/Consumption. Processes, 2019, 7, 666.	2.8	21
51	Significance of Velocity Slip in Convective Flow of Carbon Nanotubes. Symmetry, 2019, 11, 679.	2.2	1
52	New Aspects of Immunogenic Tumors Within Different Fractional Operators. Journal of Computational and Nonlinear Dynamics, 2019, 14, .	1.2	3
53	An Optimal Analysis for 3D Flow of Prandtl Nanofluid with Convectively Heated Surface. Communications in Theoretical Physics, 2019, 71, 1485.	2.5	1
54	An efficient numerical technique for a new fractional tuberculosis model with nonsingular derivative operator. Journal of Taibah University for Science, 2019, 13, 1147-1157.	2.5	37

#	Article	IF	CITATIONS
55	Effects of Homogeneous–Heterogeneous Reactions and Convective Condition in Darcy–Forchheimer Flow of Carbon Nanotubes. Journal of Heat Transfer, 2019, 141, .	2.1	19
56	The natural convective graphene oxide nanofluid flow in an upright squeezing channel. Thermal Science, 2019, 23, 1981-1989.	1.1	4
57	Optical soliton perturbation with complex Ginzburg–Landau equation using trial solution approach. Optik, 2018, 160, 44-60.	2.9	47
58	Analysis of optical solitons in nonlinear negative-indexed materials with anti-cubic nonlinearity. Optical and Quantum Electronics, 2018, 50, 1.	3.3	43
59	Optical soliton perturbation with full nonlinearity for Gerdjikov–Ivanov equation by trial equation method. Optik, 2018, 157, 1214-1218.	2.9	43
60	Optical soliton perturbation with Gerdjikov–Ivanov equation by modified simple equation method. Optik, 2018, 157, 1235-1240.	2.9	52
61	Optical soliton perturbation with full nonlinearity by trial equation method. Optik, 2018, 157, 1366-1375.	2.9	36
62	Optical soliton perturbation with full nonlinearity for Kundu–Eckhaus equation by modified simple equation method. Optik, 2018, 157, 1376-1380.	2.9	82
63	Optical soliton perturbation for complex Ginzburg–Landau equation with modified simple equation method. Optik, 2018, 158, 399-415.	2.9	80
64	Resonant optical soliton perturbation with anti-cubic nonlinearity by extended trial function method. Optik, 2018, 156, 784-790.	2.9	16
65	Multi-step preconditioned Newton methods for solving systems of nonlinear equations. SeMA Journal, 2018, 75, 127-137.	2.0	2
66	Generalized newton multi-step iterative methods GMNp,m for solving system of nonlinear equations. International Journal of Computer Mathematics, 2018, 95, 881-897.	1.8	4
67	Novel singular solitons in optical metamaterials for self-steepening effect. Optik, 2018, 154, 545-550.	2.9	9
68	Chirped <mml:math altimg="si3.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>w</mml:mi></mml:math> -shaped optical solitons of Chenâ€"Leeâ€"Liu equation. Optik, 2018, 155, 208-212.	2.9	33
69	Optical solitons and conservation law of Kundu–Eckhaus equation. Optik, 2018, 154, 551-557.	2.9	139
70	Resonant optical solitons with parabolic and dual-power laws by semi-inverse variational principle. Journal of Modern Optics, 2018, 65, 179-184.	1.3	51
71	Embedded solitons with χ(2) and χ(3) nonlinear susceptibilities by extended trial equation method. Optik, 2018, 154, 1-9.	2.9	10
72	Gray and black optical solitons with quintic nonlinearity. Optik, 2018, 154, 354-359.	2.9	11

#	Article	IF	Citations
73	Perturbed resonant 1-soliton solution with anti-cubic nonlinearity by Riccati-Bernoulli sub-ODE method. Optik, 2018, 156, 346-350.	2.9	13
74	Chirped dark and gray solitons for Chen–Lee–Liu equation in optical fibers and PCF. Optik, 2018, 155, 329-333.	2.9	33
75	A multiquadric RBF–FD scheme for simulating the financial HHW equation utilizing exponential integrator. Calcolo, 2018, 55, 1.	1.1	10
76	Chirped singular solitons for Chen-Lee-Liu equation in optical fibers and PCF. Optik, 2018, 157, 156-160.	2.9	39
77	An efficient method for the static deflection analysis of an infinite beam on a nonlinear elastic foundation of one-way spring model. Ships and Offshore Structures, 2017, 12, 963-970.	1.9	4
78	Dispersive solitons in magneto-optic waveguides. Superlattices and Microstructures, 2017, 103, 161-170.	3.1	10
79	Optical solitons in nonlinear directional couplers with trial function scheme. Nonlinear Dynamics, 2017, 88, 1891-1915.	5.2	51
80	Optical solitons with anti-cubic nonlinearity by extended trial equation method. Optik, 2017, 136, 368-373.	2.9	114
81	Dispersive optical solitons with Schrödinger–Hirota equation by extended trial equation method. Optik, 2017, 136, 451-461.	2.9	56
82	Dark and singular dispersive optical solitons of Schrödinger–Hirota equation by modified simple equation method. Optik, 2017, 136, 445-450.	2.9	50
83	Nematicons in liquid crystals by modified simple equation method. Nonlinear Dynamics, 2017, 88, 2863-2872.	5.2	36
84	Optical solitons with DWDM technology and four-wave mixing. Superlattices and Microstructures, 2017, 107, 254-266.	3.1	36
85	Nematicons in liquid crystals by extended trial equation method. Journal of Nonlinear Optical Physics and Materials, 2017, 26, 1750005.	1.8	67
86	Solitons in magneto-optic waveguides by extended trial function scheme. Superlattices and Microstructures, 2017, 107, 197-218.	3.1	108
87	Optical solitons in nonlinear negative-index materials with quadratic-cubic nonlinearity. Superlattices and Microstructures, 2017, 109, 176-182.	3.1	24
88	Perturbation theory and optical soliton cooling with anti-cubic nonlinearity. Optik, 2017, 142, 73-76.	2.9	120
89	Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle. Optik, 2017, 143, 131-134.	2.9	108
90	Optical solitons in DWDM system by extended trial equation method. Optik, 2017, 141, 157-167.	2.9	61

#	Article	IF	Citations
91	Chirped optical solitons in nano optical fibers with dual-power law nonlinearity. Optik, 2017, 142, 77-81.	2.9	39
92	Optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle. Optik, 2017, 139, 16-19.	2.9	95
93	Optical solitons in birefringent fibers with Kerr nonlinearity by exp-function method. Optik, 2017, 131, 964-976.	2.9	110
94	Dispersive optical solitons in DWDM systems. Optik, 2017, 132, 210-215.	2.9	29
95	Dipole solitons in an extended nonlinear SchrĶdinger's equation with higher-order even and odd terms. Optik, 2017, 145, 644-649.	2.9	19
96	Conservation laws for cubic–quartic optical solitons in Kerr and power law media. Optik, 2017, 145, 650-654.	2.9	127
97	Resonant optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle. Optik, 2017, 145, 18-21.	2.9	107
98	Parallel propagation of dispersive optical solitons by extended trial equation method. Optik, 2017, 144, 565-572.	2.9	19
99	Cubic–quartic optical solitons in Kerr and power law media. Optik, 2017, 144, 357-362.	2.9	134
100	Perturbed dark and singular optical solitons in polarization preserving fibers by modified simple equation method. Superlattices and Microstructures, 2017, 111, 487-498.	3.1	52
101	Optical solitons for Lakshmanan–Porsezian–Daniel model with spatio-temporal dispersion using the method of undetermined coefficients. Optik, 2017, 144, 115-123.	2.9	56
102	Numerically stable improved Chebyshev–Halley type schemes for matrix sign function. Journal of Computational and Applied Mathematics, 2017, 318, 189-198.	2.0	23
103	Optical solitons in birefringent fibers with modified simple equation method. Optik, 2017, 130, 996-1003.	2.9	30
104	A Preconditioned Iterative Method for Solving Systems of Nonlinear Equations Having Unknown Multiplicity. Algorithms, 2017, 10, 17.	2.1	3
105	Frozen Jacobian Multistep Iterative Method for Solving Nonlinear IVPs and BVPs. Complexity, 2017, 2017, 1-30.	1.6	5
106	Embedded Solitons and Conservation Law with χ ⁽²⁾ and χ ⁽³⁾ Nonlinear Susceptibilities. Acta Physica Polonica A, 2017, 131, 297-303.	0.5	11
107	Solitons in Nonlinear Directional Couplers with Optical Metamaterials by Trial Function Scheme. Acta Physica Polonica A, 2017, 132, 1399-1410.	0.5	35
108	Computational Analysis of Shallow Water Waves with Korteweg-de Vries Equation. Scientia Iranica, 2017, .	0.4	3

#	Article	IF	Citations
109	Constructing Frozen Jacobian Iterative Methods for Solving Systems of Nonlinear Equations, Associated with ODEs and PDEs Using the Homotopy Method. Algorithms, 2016, 9, 18.	2.1	5
110	Eighth-Order Compact Finite Difference Scheme for 1D Heat Conduction Equation. Advances in Numerical Analysis, 2016, 2016, 1-12.	0.2	5
111	A Family of Iterative Methods for Solving Systems of Nonlinear Equations Having Unknown Multiplicity. Algorithms, 2016, 9, 5.	2.1	1
112	A super-fast tri-parametric iterative method with memory. Applied Mathematics and Computation, 2016, 289, 486-491.	2.2	6
113	Solving systems of nonlinear equations when the nonlinearity is expensive. Computers and Mathematics With Applications, 2016, 71, 1464-1478.	2.7	15
114	Frozen jacobian iterative method for solving systems of nonlinear equations application to nonlinear IVPs and BVPs. Journal of Nonlinear Science and Applications, 2016, 09, 6021-6033.	1.0	2
115	Multi-Step Iterative Method for Computing the Numerical Solution of Systems of Nonlinear Equations Associated with ODEs. Journal of Computational and Theoretical Nanoscience, 2015, 12, 3667-3674.	0.4	0
116	Higher order multi-step Jarratt-like method for solving systems of nonlinear equations: Application to PDEs and ODEs. Computers and Mathematics With Applications, 2015, 70, 624-636.	2.7	22
117	Construction of a convergent scheme for finding matrix sign function. Applied Mathematics and Computation, 2015, 260, 242-248.	2.2	3
118	Higher order multi-step iterative method for computing the numerical solution of systems of nonlinear equations: Application to nonlinear PDEs and ODEs. Applied Mathematics and Computation, 2015, 269, 972-987.	2.2	2
119	An efficient multi-step iterative method for computing the numerical solution of systems of nonlinear equations associated with ODEs. Applied Mathematics and Computation, 2015, 250, 249-259.	2.2	18
120	An Efficient Computation of Effective Ground Range Using an Oblate Earth Model. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.7	2
121	A Matrix Iteration for Finding Drazin Inverse with Ninth-Order Convergence. Abstract and Applied Analysis, 2014, 2014, 1-7.	0.7	5
122	Numerical solution of nonlinear systems by a general class of iterative methods with application to nonlinear PDEs. Numerical Algorithms, 2014, 67, 223-242.	1.9	21
123	An efficient matrix iteration for computing weighted Moore–Penrose inverse. Applied Mathematics and Computation, 2014, 226, 441-454.	2.2	14
124	Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators. Numerical Linear Algebra With Applications, 2014, 21, 722-743.	1.6	11
125	An accelerated iterative method for computing weighted Moore–Penrose inverse. Applied Mathematics and Computation, 2013, 222, 365-371.	2.2	20
126	An Efficient Higher-Order Quasilinearization Method for Solving Nonlinear BVPs. Journal of Applied Mathematics, 2013, 2013, 1-11.	0.9	18

#	ARTICLE	IF	CITATIONS
127	Four-Point Optimal Sixteenth-Order Iterative Method for Solving Nonlinear Equations. Journal of Applied Mathematics, 2013, 2013, 1-5.	0.9	8
128	Eighth-order Derivative-Free Family of Iterative Methods for Nonlinear Equations. Journal of Modern Methods in Numerical Mathematics, 2013, 4, 26.	0.3	3
129	An Empirical Analysis of Risks, Involved in Marketing of Civil Engineering Products. Advanced Materials Research, 0, 742, 98-103.	0.3	1
130	Thermal transport of bio-convection 3D viscoelastic nanofluid flow by a convectively Riga plate with gyrotactic motile microorganisms. Waves in Random and Complex Media, 0, , 1-18.	2.7	4
131	Radiative and Darcy-Forchheimer hybrid nanofluid flow over an inclined stretching surface due to nonlinear convection and homogeneous heterogeneous reactions. Waves in Random and Complex Media, 0 , 1 - 17 .	2.7	2