Thomas Wolbers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8590765/publications.pdf

Version: 2024-02-01

68 papers

4,451 citations

126708 33 h-index 63 g-index

75 all docs

75 docs citations

75 times ranked 3989 citing authors

#	Article	IF	CITATIONS
1	What determines our navigational abilities?. Trends in Cognitive Sciences, 2010, 14, 138-146.	4.0	613
2	Hippocampus activity differentiates good from poor learners of a novel lexicon. NeuroImage, 2005, 25, 958-968.	2.1	287
3	Dissociable Retrosplenial and Hippocampal Contributions to Successful Formation of Survey Representations. Journal of Neuroscience, 2005, 25, 3333-3340.	1.7	283
4	The Aging Navigational System. Neuron, 2017, 95, 1019-1035.	3.8	256
5	Differential Recruitment of the Hippocampus, Medial Prefrontal Cortex, and the Human Motion Complex during Path Integration in Humans. Journal of Neuroscience, 2007, 27, 9408-9416.	1.7	197
6	Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale. Frontiers in Human Neuroscience, 2014, 8, 571.	1.0	192
7	Spatial updating: how the brain keeps track of changing object locations during observer motion. Nature Neuroscience, 2008, 11, 1223-1230.	7.1	143
8	The Human Retrosplenial Cortex and Thalamus Code Head Direction in a Global Reference Frame. Journal of Neuroscience, 2016, 36, 6371-6381.	1.7	128
9	Maladaptive Bias for Extrahippocampal Navigation Strategies in Aging Humans. Journal of Neuroscience, 2013, 33, 6012-6017.	1.7	127
10	Modality-Independent Coding of Spatial Layout in the Human Brain. Current Biology, 2011, 21, 984-989.	1.8	125
11	Neural foundations of emerging route knowledge in complex spatial environments. Cognitive Brain Research, 2004, 21, 401-411.	3.3	121
12	The Human Dentate Gyrus Plays a Necessary Role in Discriminating New Memories. Current Biology, 2016, 26, 2629-2634.	1.8	110
13	Ageing effects on path integration and landmark navigation. Hippocampus, 2012, 22, 1770-1780.	0.9	100
14	Cardiovascular fitness modulates brain activation associated with spatial learning. NeuroImage, 2012, 59, 3003-3014.	2.1	94
15	Aging specifically impairs switching to an allocentric navigational strategy. Frontiers in Aging Neuroscience, 2012, 4, 29.	1.7	94
16	Compromised Grid-Cell-like Representations in Old Age as a Key Mechanism to Explain Age-Related Navigational Deficits. Current Biology, 2018, 28, 1108-1115.e6.	1.8	93
17	Dissociable contributions within the medial temporal lobe to encoding of object-location associations. Learning and Memory, 2005, 12, 343-351.	0.5	91
18	How cognitive aging affects multisensory integration of navigational cues. Neurobiology of Aging, 2014, 35, 2761-2769.	1.5	85

#	Article	IF	Citations
19	How age-related strategy switching deficits affect wayfinding in complex environments. Neurobiology of Aging, 2014, 35, 1095-1102.	1.5	82
20	The potential of virtual reality for spatial navigation research across the adult lifespan. Journal of Experimental Biology, 2019, 222, .	0.8	74
21	Decoding the direction of auditory motion in blind humans. Neurolmage, 2011, 56, 681-687.	2.1	72
22	Dissociable cognitive mechanisms underlying human path integration. Experimental Brain Research, 2011, 208, 61-71.	0.7	72
23	Cue combination in human spatial navigation. Cognitive Psychology, 2017, 95, 105-144.	0.9	70
24	Embodiment in the aging mind. Neuroscience and Biobehavioral Reviews, 2018, 86, 207-225.	2.9	59
25	Implementation of visuospatial cues in response selection. Neurolmage, 2006, 29, 286-294.	2.1	56
26	Rest boosts the long-term retention of spatial associative and temporal order information. Hippocampus, 2015, 25, 1017-1027.	0.9	46
27	The predictive value of white matter organization in posterior parietal cortex for spatial visualization ability. Neurolmage, 2006, 32, 1450-1455.	2.1	45
28	Rotated alphanumeric characters do not automatically activate frontoparietal areas subserving mental rotation. NeuroImage, 2009, 44, 1063-1073.	2.1	45
29	Wakeful rest promotes the integration of spatial memories into accurate cognitive maps. Hippocampus, 2016, 26, 185-193.	0.9	44
30	Changes in Connectivity Profiles as a Mechanism for Strategic Control over Interfering Subliminal Information. Cerebral Cortex, 2006, 16, 857-864.	1.6	42
31	Changes in pattern completion – A key mechanism to explain age-related recognition memory deficits?. Cortex, 2015, 64, 343-351.	1.1	42
32	Learning New Sensorimotor Contingencies: Effects of Long-Term Use of Sensory Augmentation on the Brain and Conscious Perception. PLoS ONE, 2016, 11, e0166647.	1.1	41
33	Effects of a cognitive training on spatial learning and associated functional brain activations. BMC Neuroscience, 2013, 14, 73.	0.8	39
34	Sources of path integration error in young and aging humans. Nature Communications, 2020, 11, 2626.	5.8	35
35	Space, time, and numbers in the right posterior parietal cortex: Differences between response code associations and congruency effects. Neurolmage, 2016, 129, 72-79.	2.1	31
36	Comparable rest-related promotion of spatial memory consolidation in younger and older adults. Neurobiology of Aging, 2016, 48, 143-152.	1.5	29

3

#	Article	IF	CITATIONS
37	A novel virtual-reality-based route-learning test suite: Assessing the effects of cognitive aging on navigation. Behavior Research Methods, 2020, 52, 630-640.	2.3	28
38	Neural Dynamics of Learning Sound—Action Associations. PLoS ONE, 2008, 3, e3845.	1.1	25
39	Physiological signal variability in hMT+ reflects performance on a direction discrimination task. Frontiers in Psychology, 2011, 2, 185.	1.1	24
40	Path integration in normal aging and Alzheimer's disease. Trends in Cognitive Sciences, 2022, 26, 142-158.	4.0	21
41	Representation of Spatial Information in Key Areas of the Descending Pain Modulatory System. Journal of Neuroscience, 2014, 34, 4634-4639.	1.7	20
42	Spatial memoryââ,¬â€a unique window into healthy and pathological aging. Frontiers in Aging Neuroscience, 2014, 6, 35.	1.7	19
43	The GridCAT: A Toolbox for Automated Analysis of Human Grid Cell Codes in fMRI. Frontiers in Neuroinformatics, 2017, 11, 47.	1.3	19
44	Increased Hippocampal Excitability and Altered Learning Dynamics Mediate Cognitive Mapping Deficits in Human Aging. Journal of Neuroscience, 2021, 41, 3204-3221.	1.7	19
45	The Effects of Attentional Engagement on Route Learning Performance in a Virtual Environment: An Aging Study. Frontiers in Aging Neuroscience, 2017, 9, 235.	1.7	18
46	Timing deficiencies in amnestic Mild Cognitive Impairment: Disentangling clock and memory processes. Behavioural Brain Research, 2019, 373, 112110.	1.2	18
47	Aging and spatial cues influence the updating of navigational memories. Scientific Reports, 2019, 9, 11469.	1.6	17
48	Computing distance information from landmarks and self-motion cues - Differential contributions of anterior-lateral vs. posterior-medial entorhinal cortex in humans. NeuroImage, 2019, 202, 116074.	2.1	17
49	The effect of feedback on temporal error monitoring and timing behavior. Behavioural Brain Research, 2019, 369, 111929.	1.2	15
50	Spatial Updating Depends on Gravity. Frontiers in Neural Circuits, 2020, 14, 20.	1.4	14
51	Repetitive transcranial magnetic stimulation reveals a causal role of the human precuneus in spatial updating. Scientific Reports, 2018, 8, 10171.	1.6	13
52	<scp>O</scp> n the (a)symmetry between the perception of time and space in largeâ€scale environments. Hippocampus, 2018, 28, 539-548.	0.9	12
53	Preserved multisensory body representations in advanced age. Scientific Reports, 2019, 9, 2663.	1.6	12
54	Spatial updating deficits in human aging are associated with traces of former memory representations. Neurobiology of Aging, 2019, 76, 53-61.	1.5	12

#	Article	IF	CITATIONS
55	Temporal context effects are associated with cognitive status in advanced age. Psychological Research, 2022, 86, 512-521.	1.0	10
56	Memory Image Completion: Establishing a task to behaviorally assess pattern completion in humans. Hippocampus, 2019, 29, 340-351.	0.9	9
57	Age-related changes in time perception: The impact of naturalistic environments and retrospective judgements on timing performance. Quarterly Journal of Experimental Psychology, 2021, 74, 2002-2012.	0.6	9
58	Systematic Underreproduction of Time Is Independent of Judgment Certainty. Neural Plasticity, 2016, 2016, 1-8.	1.0	5
59	Social targets improve body-based and environment-based strategies during spatial navigation. Experimental Brain Research, 2018, 236, 755-764.	0.7	4
60	Rapid improvement of cognitive maps in the awake state. Hippocampus, 2019, 29, 862-868.	0.9	4
61	Negative errors in time reproduction tasks. Psychological Research, 2020, 84, 168-176.	1.0	4
62	Reaching the Goal: Superior Navigators in Late Adulthood Provide a Novel Perspective into Successful Cognitive Aging. Topics in Cognitive Science, 2023, 15, 15-45.	1.1	4
63	Spatial Navigation. , 2015, , 161-171.		3
64	Population-Level Analysis of Human Grid Cell Activation. Neuromethods, 2019, , 257-279.	0.2	3
65	Impaired remapping of social relationships in older adults. Scientific Reports, 2021, 11, 21910.	1.6	2
66	Cross-dimensional interference between time and distance during spatial navigation is mediated by speed representations in intraparietal sulcus and area hMT+. NeuroImage, 2022, 257, 119336.	2.1	2
67	Using Discrete Time Markov Chains for Control of Idle Character Animation. , 2018, , .		1
68	Reducing the tendency for chronometric counting in duration discrimination tasks. Attention, Perception, and Psychophysics, 0, , .	0.7	1