

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8590606/publications.pdf Version: 2024-02-01

		168829	116156
89	4,610	31	66
papers	citations	h-index	g-index
91	91	91	7233
all docs	docs citations	times ranked	citing authors

VI CUI

#	Article	IF	CITATIONS
1	Concurrent and Mechanochemical Activation of Two Distinct and Latent Fluorophores via Retro-Diels–Alder Reaction of an Anthracene–Aminomaleimide Adduct. ACS Macro Letters, 2022, 11, 310-316.	2.3	8
2	Unimolecular Nano-contrast Agent with Ultrahigh Relaxivity and Very Long Retention for Magnetic Resonance Lymphography. Nano Letters, 2022, 22, 4090-4096.	4.5	18
3	Synthesis of fully degradable cationic polymers with various topological structures <i>via</i> postpolymerization modification by using thio-bromo "click―reaction. Polymer Chemistry, 2021, 12, 2592-2597.	1.9	7
4	Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nature Communications, 2021, 12, 3021.	5.8	397
5	Combining Hyperbranched and Linear Structures in Solid Polymer Electrolytes to Enhance Mechanical Properties and Room-Temperature Ion Transport. Frontiers in Chemistry, 2021, 9, 563864.	1.8	4
6	Precision Wormlike Nanoadjuvant Governs Potency of Vaccination. Nano Letters, 2021, 21, 7236-7243.	4.5	9
7	Selective Electrochemical Generation of Hydrogen Peroxide from Oxygen Reduction on Atomically Dispersed Platinum. ACS Applied Energy Materials, 2021, 4, 10843-10848.	2.5	16
8	High-Yield Synthesis of Molecular Bottlebrushes via PISA-Assisted Grafting-from Strategy. ACS Macro Letters, 2021, 10, 1260-1265.	2.3	18
9	Efficient Metal-Free Norbornadiene–Maleimide Click Reaction for the Formation of Molecular Bottlebrushes. Macromolecules, 2021, 54, 10031-10039.	2.2	12
10	A Simple Mechanochromic Mechanophore Based on Aminothiomaleimide. ACS Macro Letters, 2021, 10, 1423-1428.	2.3	8
11	Chainâ€growth polymerization of azide–alkyne difunctional monomer: Synthesis of star polymer with linear polytriazole arms from a core. Journal of Polymer Science, 2020, 58, 84-90.	2.0	6
12	Bioinspired Construction of Ruthenium-decorated Nitrogen-doped Graphene Aerogel as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Chemical Research in Chinese Universities, 2020, 36, 709-714.	1.3	4
13	Bifunctional mechanism of hydrogen oxidation reaction on atomic level tailored-Ru@Pt core-shell nanoparticles with tunable Pt layers. Journal of Electroanalytical Chemistry, 2020, 872, 114348.	1.9	18
14	Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts. Nature Communications, 2020, 11, 4558.	5.8	131
15	Cationic Block Copolymer Nanoparticles with Tunable DNA Affinity for Treating Rheumatoid Arthritis. Advanced Functional Materials, 2020, 30, 2000391.	7.8	29
16	Synthesis of Hyperbranched Polymers via Metalâ€Free ATRP in Solution and Microemulsion. Macromolecular Chemistry and Physics, 2020, 221, 2000008.	1.1	15
17	Editorial: Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Frontiers in Chemistry, 2020, 8, 245.	1.8	31
18	Chainâ€growth polymerization of azide–alkyne difunctional monomer: Synthesis of star polymer with linear polytriazole arms from a core lournal of Polymer Science, 2020, 58, 84-90	2.0	0

#	Article	IF	CITATIONS
19	Chemically inert covalently networked triazole-based solid polymer electrolytes for stable all-solid-state lithium batteries. Journal of Materials Chemistry A, 2019, 7, 19691-19695.	5.2	17
20	Oriented Self-Assembled Monolayer of Zn(II)-Tetraphenylporphyrin on TiO ₂ Electrode for Photoelectrochemical Analysis. Analytical Chemistry, 2019, 91, 2759-2767.	3.2	48
21	Molecular Bottlebrushes Featuring Brush-on-Brush Architecture. ACS Macro Letters, 2019, 8, 749-753.	2.3	28
22	Electronic Metal–Support Interaction To Modulate MoS ₂ -Supported Pd Nanoparticles for the Degradation of Organic Dyes. ACS Applied Nano Materials, 2019, 2, 3385-3393.	2.4	43
23	Plasmonic hot charge carriers activated Ni centres of metal–organic frameworks for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 10601-10609.	5.2	51
24	Hyperbranched PEO-Based Hyperstar Solid Polymer Electrolytes with Simultaneous Improvement of Ion Transport and Mechanical Strength. ACS Applied Energy Materials, 2019, 2, 1608-1615.	2.5	74
25	Maleimide–thiol adducts stabilized through stretching. Nature Chemistry, 2019, 11, 310-319.	6.6	154
26	Tandem Functionalization in a Highly Branched Polymer with Layered Structure. Chemistry - A European Journal, 2018, 24, 5974-5981.	1.7	19
27	Localized surface plasmon resonance enhanced label-free photoelectrochemical immunoassay by Au-MoS2 nanohybrid. Electrochimica Acta, 2018, 271, 361-369.	2.6	21
28	Bioinspired Engineering of Cobalt-Phosphonate Nanosheets for Robust Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 3895-3902.	5.5	69
29	Highly Branched Polymers with Layered Structures that Mimic Lightâ€Harvesting Processes. Angewandte Chemie, 2018, 130, 525-529.	1.6	17
30	Highly Branched Polymers with Layered Structures that Mimic Lightâ€Harvesting Processes. Angewandte Chemie - International Edition, 2018, 57, 516-520.	7.2	43
31	Atomic level tailoring of the electrocatalytic activity of Au-Pt core-shell nanoparticles with controllable Pt layers toward hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2018, 819, 442-446.	1.9	30
32	Ligand effect in the synthesis of hyperbranched polymers via copperâ€catalyzed azideâ€alkyne cycloaddition polymerization (CuAACP). Journal of Polymer Science Part A, 2018, 56, 2238-2244.	2.5	11
33	Tunable Fluorescence from a Responsive Hyperbranched Polymer with Spatially Arranged Fluorophore Arrays. Chemistry - an Asian Journal, 2018, 13, 3723-3728.	1.7	7
34	Plasmon Coupling Effect-Enhanced Imaging of Metal Ions in Living Cells Using DNAzyme Assembled Core–Satellite Structures. ACS Applied Materials & Interfaces, 2018, 10, 33966-33975.	4.0	21
35	Template synthesis of gold nanoparticles from hyperstar polymers and exploration of their catalytic function for hydrogen evolution reaction. Polymer, 2018, 153, 331-337.	1.8	9
36	Shape and Mechanical Control of Poly(ethylene oxide) Based Polymersome with Polyoxometalates via Hydrogen Bond. Journal of Physical Chemistry B, 2017, 121, 1723-1730.	1.2	6

#	Article	IF	CITATIONS
37	Enhanced Peroxidaseâ€Like Performance of Gold Nanoparticles by Hot Electrons. Chemistry - A European Journal, 2017, 23, 6717-6723.	1.7	67
38	Preparation of hyperstar polymers with encapsulated Au ₂₅ (SR) ₁₈ clusters as recyclable catalysts for nitrophenol reduction. Nanoscale, 2017, 9, 3629-3636.	2.8	23
39	Direct Plasmon-Accelerated Electrochemical Reaction on Gold Nanoparticles. ACS Nano, 2017, 11, 5897-5905.	7.3	208
40	Frontispiece: Enhanced Peroxidase‣ike Performance of Gold Nanoparticles by Hot Electrons. Chemistry - A European Journal, 2017, 23, .	1.7	1
41	Secondary self-assembly behaviors of PEO-b-PtBA-b-PS triblock terpolymers in solution. Chemical Papers, 2017, 71, 1721-1729.	1.0	3
42	Produce Molecular Brushes with Ultrahigh Grafting Density Using Accelerated CuAAC Grafting-Onto Strategy. Macromolecules, 2017, 50, 215-222.	2.2	46
43	A Novel Chain-Growth CuAAC Polymerization: One-pot Synthesis of Dendritic Hyperbranched Polymers with Well-Defined Structures. Synlett, 2017, 28, 391-396.	1.0	10
44	Copolymer Nanofilters with Charge-Patterned Domains for Enhanced Electrolyte Transport. Chemistry of Materials, 2017, 29, 762-772.	3.2	15
45	Energy Level Engineering of MoS ₂ by Transition-Metal Doping for Accelerating Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2017, 139, 15479-15485.	6.6	713
46	The hydrogen evolution reaction on gold nanoparticles modified MoS ₂ nanosheets. Scientia Sinica Chimica, 2017, 47, 676-682.	0.2	0
47	Microphase Separation within Disk Shaped Aggregates of Triblock Bottlebrushes. Macromolecular Rapid Communications, 2016, 37, 605-609.	2.0	14
48	Synthesis of Hyperbranched Polymers with High Molecular Weight in the Homopolymerization of Polymerizable Trithiocarbonate Transfer Agent without Thermal Initiator. Macromolecules, 2016, 49, 6471-6479.	2.2	13
49	Synthesis of acid-degradable hyperbranched polymers by chain-growth CuAAC polymerization of an AB ₃ monomer. Polymer Chemistry, 2016, 7, 5512-5517.	1.9	33
50	Effect of Monomer Structure on the CuAAC Polymerization To Produce Hyperbranched Polymers. Macromolecules, 2016, 49, 5342-5349.	2.2	34
51	Preparation of water-soluble hyperbranched polymers with tunable thermosensitivity using chain-growth CuAAC copolymerization. Polymer Chemistry, 2016, 7, 7500-7505.	1.9	14
52	A simple way to fine tune the redox potentials of cobalt ions encapsulated in nitrogen doped graphene molecular catalysts for the oxygen evolution reaction. Chemical Communications, 2016, 52, 13409-13412.	2.2	11
53	Investigate the Glass Transition Temperature of Hyperbranched Copolymers with Segmented Monomer Sequence. Macromolecules, 2016, 49, 4416-4422.	2.2	35
54	Design a Highly Reactive Trifunctional Core Molecule To Obtain Hyperbranched Polymers with over a Million Molecular Weight in One-Pot Click Polymerization. Macromolecules, 2016, 49, 760-766.	2.2	73

#	Article	IF	CITATIONS
55	The use of azide–alkyne click chemistry in recent syntheses and applications of polytriazole-based nanostructured polymers. Nanoscale, 2016, 8, 4864-4881.	2.8	88
56	Probing the Inhomogeneous Charge Distribution on Annealed Polyelectrolyte Star Polymers in Dilute Aqueous Solutions. ACS Macro Letters, 2016, 5, 402-406.	2.3	18
57	Comparison of Loading Efficiency between Hyperbranched Polymers and Crossâ€Linked Nanogels at Various Branching Densities. Macromolecular Rapid Communications, 2015, 36, 2076-2082.	2.0	17
58	Chainâ€Growth Click Polymerization of AB ₂ Monomers for the Formation of Hyperbranched Polymers with Low Polydispersities in a Oneâ€Pot Process. Angewandte Chemie - International Edition, 2015, 54, 7631-7635.	7.2	138
59	Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS ₂ Nanosheets. Journal of the American Chemical Society, 2015, 137, 7365-7370.	6.6	556
60	Innentitelbild: Chain-Growth Click Polymerization of AB2Monomers for the Formation of Hyperbranched Polymers with Low Polydispersities in a One-Pot Process (Angew. Chem. 26/2015). Angewandte Chemie, 2015, 127, 7562-7562.	1.6	1
61	Developing recyclable pH-responsive magnetic nanoparticles for oil–water separation. Polymer, 2015, 72, 361-367.	1.8	92
62	Recent Progress on Synthesis of Hyperbranched Polymers with Controlled Molecular Weight Distribution. ACS Symposium Series, 2015, , 135-147.	0.5	7
63	Hollow Core–Shell Structured Ni–Sn@C Nanoparticles: A Novel Electrocatalyst for the Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 9098-9102.	4.0	71
64	Ultrasensitive Protein Concentration Detection on a Micro/Nanofluidic Enrichment Chip Using Fluorescence Quenching. ACS Applied Materials & Interfaces, 2015, 7, 6835-6841.	4.0	25
65	Preparation of cylindrical multi-compartment micelles by the hierarchical self-assembly of ABC triblock polymer in solution. RSC Advances, 2015, 5, 85446-85452.	1.7	2
66	Effect of polymer matrix on temperature sensitivity of temperature sensitive paints. Chinese Journal of Polymer Science (English Edition), 2015, 33, 1351-1358.	2.0	7
67	One-pot synthesis of hyperstar polymers via sequential ATRP of inimers and functional monomers in aqueous dispersed media. Polymer Chemistry, 2015, 6, 6739-6745.	1.9	25
68	Synthesis of degradable molecular brushes via a combination of ringâ€opening polymerization and click chemistry. Journal of Polymer Science Part A, 2015, 53, 239-248.	2.5	36
69	Disk-Like Micelles with a Highly Ordered Pattern from Molecular Bottlebrushes. ACS Macro Letters, 2014, 3, 70-73.	2.3	76
70	Oleylamine-functionalized palladium nanoparticles with enhanced electrocatalytic activity for the oxygen reduction reaction. Journal of Power Sources, 2014, 246, 356-360.	4.0	22
71	Highly efficient synthesis of cylindrical polymer brushes with various side chains via click grafting-onto approach. Polymer, 2013, 54, 5634-5642.	1.8	55
72	Visible Light Mediated Fast Iterative RAFT Synthesis of Aminoâ€Based Reactive Copolymers in Water at 20 °C. Macromolecular Rapid Communications, 2013, 34, 1827-1832.	2.0	44

#	Article	IF	CITATIONS
73	Synthesis of Cylindrical Polymer Brushes with Umbrella-Like Side Chains via a Combination of Grafting-from and Grafting-onto Methods. Macromolecules, 2013, 46, 2391-2398.	2.2	62
74	Fluorescent Polymeric Micelles with Tetraphenylethylene Moieties and Their Application for the Selective Detection of Glucose. Macromolecular Bioscience, 2012, 12, 1583-1590.	2.1	36
75	Thermo-responsive organic–inorganic hybrid vesicles with tunable membrane permeability. Soft Matter, 2012, 8, 12002.	1.2	23
76	Conformational Transition of Poly(N-isopropylacrylamide) Single Chains in Its Cononsolvency Process: A Study by Fluorescence Correlation Spectroscopy and Scaling Analysis. Macromolecules, 2012, 45, 9196-9204.	2.2	51
77	Core extractable nanoâ€objects: Manipulating triblock copolymer micelles. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 323-327.	2.4	7
78	Synthesis of miktoâ€ŧopology star polymer containing one cyclic arm. Journal of Polymer Science Part A, 2012, 50, 4239-4245.	2.5	14
79	Ultra-fast RAFT polymerisation of poly(ethylene glycol) acrylate in aqueous media under mild visible light radiation at 25 °C. Chemical Communications, 2009, , 1368.	2.2	76
80	Effect of Mild Visible Light on Rapid Aqueous RAFT Polymerization of Water-Soluble Acrylic Monomers at Ambient Temperature: Initiation and Activation. Macromolecules, 2009, 42, 3917-3926.	2.2	139
81	Facile Synthesis and Thermoresponsive Behaviors of a Well-Defined Pyrrolidone Based Hydrophilic Polymer. Macromolecules, 2008, 41, 3007-3014.	2.2	73
82	Synthesis of well-defined glycidyl methacrylate based block copolymers with self-activation and self-initiation behaviors via ambient temperature atom transfer radical polymerization. Journal of Polymer Science Part A, 2007, 45, 2947-2958.	2.5	23
83	Phenolic Resin and Derived Carbon Hollow Spheres. Macromolecular Chemistry and Physics, 2006, 207, 1633-1639.	1.1	45
84	Effects of irradiation on the melting and crystallization behavior of ethylene polymers with different thermal history. Journal of Applied Polymer Science, 2003, 88, 536-544.	1.3	3
85	Inter-Spherulite Boundary Structure in Bulk-Crystallized Polyethylenes Directly Observed by Atomic Force Microscopy. Polymer Journal, 2003, 35, 436-439.	1.3	3
86	Novel characterization of the crystalline segment distribution and its effect on the crystallization of branched polyethylene by differential scanning calorimetry. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2107-2118.	2.4	15
87	Thermal decomposition of amide and imide derivatives of maleated polyethylene. Journal of Polymer Science Part A, 2000, 38, 730-740.	2.5	14
88	Thermal degradation of organo-soluble polyimides. Science in China Series B: Chemistry, 1999, 42, 316-325.	0.8	3
89	Thermal decomposition behavior of naphthalene-labeled polyethylene. Journal of Polymer Science Part A, 1996, 34, 2045-2049.	2.5	2