Juncai Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8590501/publications.pdf

Version: 2024-02-01

		304743	395702
51	1,335	22	33
papers	citations	h-index	g-index
51	51	51	808
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Preparation of pectin-based nanofibers encapsulating Lactobacillus rhamnosus 1.0320 by electrospinning. Food Hydrocolloids, 2022, 124, 107216.	10.7	38
2	Enzymatic activity and stability of soybean oil body emulsions recovered under neutral and alkaline conditions: Impacts of thermal treatments. LWT - Food Science and Technology, 2022, 153, 112545.	5.2	15
3	Characterization of major volatile compounds in whey spirits produced by different distillation stages of fermented lactose-supplemented whey. Journal of Dairy Science, 2022, 105, 83-96.	3.4	20
4	Insight into binding behavior, structure, and foam properties of $\hat{l}\pm$ -lactalbumin/glycyrrhizic acid complex in an acidic environment. Food Hydrocolloids, 2022, 125, 107411.	10.7	25
5	Superfine grinding pretreatment enhances emulsifying, gel properties and in vitro digestibility of laccase-treated α-Lactalbumin. LWT - Food Science and Technology, 2022, 157, 113082.	5. 2	21
6	Biological activities and in vitro digestion characteristics of glycosylated α-lactalbumin prepared by microwave heating: Impacts of ultrasonication. LWT - Food Science and Technology, 2022, 158, 113141.	5.2	24
7	Consequences of ball milling combined with high-pressure homogenization on structure, physicochemical and rheological properties of citrus fiber. Food Hydrocolloids, 2022, 127, 107515.	10.7	33
8	Oil bodies extracted from high-oil soybeans (<i>Glycine max</i>) exhibited higher oxidative and physical stability than oil bodies from high-protein soybeans. Food and Function, 2022, 13, 3271-3282.	4.6	14
9	pH-Dependent Binding Behavior of the α-Lactalbumin/Glycyrrhizic Acid Complex in Relation to Their Foaming Characteristics in Bulk. Journal of Agricultural and Food Chemistry, 2022, 70, 3252-3262.	5. 2	5
10	Physical and oxidative stability of astaxanthin microcapsules prepared with liposomes. Journal of the Science of Food and Agriculture, 2022, 102, 4909-4917.	3.5	19
11	<i>Lactobacillus paracasei</i> 24 Attenuates Lipid Accumulation in High-Fat Diet-Induced Obese Mice by Regulating the Gut Microbiota. Journal of Agricultural and Food Chemistry, 2022, 70, 4631-4643.	5. 2	31
12	Combination of microwave heating and transglutaminase cross-linking enhances the stability of limonene emulsion carried by whey protein isolate. Food Bioscience, 2022, 47, 101684.	4.4	12
13	<i>Lactobacillus plantarum</i> 23-1 improves intestinal inflammation and barrier function through the TLR4/NF-ÎB signaling pathway in obese mice. Food and Function, 2022, 13, 5971-5986.	4.6	34
14	Effects of Soybean Oil Body as a Milk Fat Substitute on Ice Cream: Physicochemical, Sensory and Digestive Properties. Foods, 2022, 11, 1504.	4.3	22
15	Hydroxypropyl methylcellulose (HPMC) reduces the hardening of fructose-containing and maltitol-containing high-protein nutrition bars during storage. LWT - Food Science and Technology, 2022, 163, 113607.	5.2	0
16	Soybean Oil Bodies as a Milk Fat Substitute Improves Quality, Antioxidant and Digestive Properties of Yogurt. Foods, 2022, 11, 2088.	4.3	2
17	<i>Lactobacillus plantarum</i> Neuroprotective Regimen Against Neurodegeneration and Memory Impairment by Regulating Short-Chain Fatty Acids and the c-Jun N-Terminal Kinase Signaling Pathway in Mice. Journal of Agricultural and Food Chemistry, 2022, 70, 8619-8630.	5.2	15
18	Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. Journal of Controlled Release, 2022, 349, 184-205.	9.9	52

#	Article	IF	CITATIONS
19	Citric acid promotes disulfide bond formation of whey protein isolate in non-acidic aqueous system. Food Chemistry, 2021, 338, 127819.	8.2	36
20	Gelling, microstructure and water-holding properties of alpha-lactalbumin emulsion gel: Impact of combined ultrasound pretreatment and laccase cross-linking. Food Hydrocolloids, 2021, 110, 106122.	10.7	50
21	Electro-encapsulation of probiotics in gum Arabic-pullulan blend nanofibres using electrospinning technology. Food Hydrocolloids, 2021, 111, 106381.	10.7	72
22	Laccase cross-linking of sonicated \hat{l}_{\pm} -Lactalbumin improves physical and oxidative stability of CLA oil in water emulsion. Ultrasonics Sonochemistry, 2021, 71, 105365.	8.2	13
23	Purification and antimicrobial mechanism of a novel bacteriocin produced by Lactobacillus rhamnosus 1.0320. LWT - Food Science and Technology, 2021, 137, 110338.	5.2	39
24	Quantitative profiling of glycerides, glycerophosphatides and sphingolipids in Chinese human milk with ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. Food Chemistry, 2021, 346, 128857.	8.2	29
25	<i>Lactobacillus plantarum</i> 69-2 Combined with Galacto-Oligosaccharides Alleviates <scp>d</scp> -Galactose-Induced Aging by Regulating the AMPK/SIRT1 Signaling Pathway and Gut Microbiota in Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 2745-2757.	5.2	41
26	Study of the immunoregulatory effect of Lactobacillus rhamnosus 1.0320 in immunosuppressed mice. Journal of Functional Foods, 2021, 79, 104423.	3.4	15
27	Comparison of carrying mechanism between three fat-soluble vitamins and alpha-lactalbumin: Effects on structure and physicochemical properties of alpha-lactalbumin. Food Hydrocolloids, 2021, 116, 106662.	10.7	24
28	Screening beneficial bacteriostatic lactic acid bacteria in the intestine and studies of bacteriostatic substances. Journal of Zhejiang University: Science B, 2021, 22, 533-547.	2.8	14
29	<i>Ziziphi spinosae</i> Semen Oil Enhance the Oxidative Stability of Soybean Oil under Frying Conditions. European Journal of Lipid Science and Technology, 2021, 123, 2100060.	1.5	5
30	Investigation of the consequences of ultrasound on the physicochemical, emulsification, and gelatinization characteristics of citric acid–treated whey protein isolate. Journal of Dairy Science, 2021, 104, 10628-10639.	3.4	4
31	Cysteine inducing formation and reshuffling of disulfide bonds in cold-extruded whey protein molecules: From structural and functional characteristics to cytotoxicity. Food Chemistry, 2021, 360, 130121.	8.2	14
32	Comparisons of characteristics, kinetics and biological activities of glycosylated α-lactalbumin produced by microwave and conventional heating. LWT - Food Science and Technology, 2021, 151, 112111.	5.2	8
33	Limited hydrolysis of glycosylated whey protein isolate ameliorates the oxidative and physical stabilities of conjugated linoleic acid oil-in-water emulsions. Food Chemistry, 2021, 362, 130212.	8.2	18
34	Microwave irradiation treatment improved the structure, emulsifying properties and cell proliferation of laccase-crosslinked l±-lactalbumin. Food Hydrocolloids, 2021, 121, 107036.	10.7	9
35	<scp>NaCl</scp> induces flocculation and lipid oxidation of soybean oil body emulsions recovered by neutral aqueous extraction. Journal of the Science of Food and Agriculture, 2021, , .	3.5	6
36	Characterization and comparison of \hat{l}_{\pm} -lactalbumin pre-and post-emulsion. Journal of Food Engineering, 2020, 269, 109743.	5.2	19

#	Article	IF	CITATIONS
37	Structure and characterization of laccase-crosslinked α-lactalbumin: Impacts of high pressure homogenization pretreatment. LWT - Food Science and Technology, 2020, 118, 108843.	5.2	24
38	Consequences of superfine grinding treatment on structure, physicochemical and rheological properties of transglutaminase-crosslinked whey protein isolate. Food Chemistry, 2020, 309, 125757.	8.2	48
39	Combination of high-pressure homogenization and ultrasound improves physiochemical, interfacial and gelation properties of whey protein isolate. Innovative Food Science and Emerging Technologies, 2020, 65, 102450.	5. 6	36
40	Structure and emulsifying properties of whey protein isolate: Effect of safflower yellow concentration. LWT - Food Science and Technology, 2020, 123, 109079.	5.2	9
41	Comparison of interaction between three similar chalconoids and $\hat{l}\pm$ -lactalbumin: Impact on structure and functionality of $\hat{l}\pm$ -lactalbumin. Food Research International, 2020, 131, 109006.	6.2	39
42	Study of the alleviation effects of a combination of <i>Lactobacillus rhamnosus</i> and inulin on mice with colitis. Food and Function, 2020, 11, 3823-3837.	4.6	69
43	Effects of ultrafiltration and hydrolysis on antioxidant activities of Maillard reaction products derived from whey protein isolate and galactose. LWT - Food Science and Technology, 2019, 113, 108313.	5.2	10
44	Effects of polymerized whey protein prepared directly from cheese whey as fat replacer on physiochemical, texture, microstructure and sensory properties of low-fat set yogurt. LWT - Food Science and Technology, 2019, 115, 108268.	5.2	29
45	Effect of NaCl on oxidative stability and protein properties of oil bodies from different oil crops. LWT - Food Science and Technology, 2019, 113, 108263.	5.2	12
46	Impact of ultrasonic power on the structure and emulsifying properties of whey protein isolate under various pH conditions. Process Biochemistry, 2019, 81, 113-122.	3.7	88
47	Characterization of antibacterial activity and mechanisms of two linear derivatives of bactenecin. LWT - Food Science and Technology, 2019, 107, 89-97.	5.2	7
48	Analysis of the monitoring status of residual nitrite in meat products in China from 2000 to 2011. Meat Science, 2018, 136, 30-34.	5 . 5	21
49	Surface Hydrophobicity and Functional Properties of Citric Acid Cross-Linked Whey Protein Isolate: The Impact of pH and Concentration of Citric Acid. Molecules, 2018, 23, 2383.	3.8	41
50	Effect of heat treatment on physicochemical and emulsifying properties of polymerized whey protein concentrate and polymerized whey protein isolate. LWT - Food Science and Technology, 2018, 98, 134-140.	5 . 2	74
51	Laccase-aided modification: Effects on structure, gel properties and antioxidant activities of \hat{l}_{\pm} -lactalbumin. LWT - Food Science and Technology, 2017, 80, 355-363.	5.2	30