Xiaobo Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8590480/publications.pdf

Version: 2024-02-01

759233 610901 25 799 12 24 h-index citations g-index papers 26 26 26 1079 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molybdenum oxide nanoporous asymmetric membranes for high-capacity lithium ion battery anode. Journal of Materials Research, 2022, 37, 2204-2215.	2.6	3
2	General Descriptors for CO ₂ -Assisted Selective Câ€"H/Câ€"C Bond Scission in Ethane. Journal of the American Chemical Society, 2022, 144, 4186-4195.	13.7	26
3	Passive Oxide Film Growth Observed On the Atomic Scale. Advanced Materials Interfaces, 2022, 9, .	3.7	4
4	Composition-dependent ordering transformations in Pt–Fe nanoalloys. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117899119.	7.1	10
5	Catalytic Tandem CO ₂ –Ethane Reactions and Hydroformylation for C3 Oxygenate Production. ACS Catalysis, 2022, 12, 8279-8290.	11.2	8
6	Effect of surface steps on chemical ordering in the subsurface of Cu(Au) solid solutions. Physical Review B, 2021, 103, .	3.2	5
7	Synthesis of Core@Shell Cuâ€Ni@Ptâ€Cu Nanoâ€Octahedra and Their Improved MOR Activity. Angewandte Chemie - International Edition, 2021, 60, 7675-7680.	13.8	58
8	Synthesis of Core@Shell Cuâ€Ni@Ptâ€Cu Nanoâ€Octahedra and Their Improved MOR Activity. Angewandte Chemie, 2021, 133, 7753-7758.	2.0	6
9	Atomic Origin of the Autocatalytic Reduction of Monoclinic CuO in a Hydrogen Atmosphere. Journal of Physical Chemistry Letters, 2021, 12, 9547-9556.	4.6	12
10	Atomicâ€Scale Mechanism of Unidirectional Oxide Growth. Advanced Functional Materials, 2020, 30, 1906504.	14.9	30
11	Effects of Zr Doping into Ceria for the Dry Reforming of Methane over Ni/CeZrO ₂ Catalysts: In Situ Studies with XRD, XAFS, and AP-XPS. ACS Catalysis, 2020, 10, 3274-3284.	11.2	107
12	In Situ Transmission Electron Microscopy on Energyâ€Related Catalysis. Advanced Energy Materials, 2020, 10, 1902105.	19.5	78
13	Atomic-scale phase separation induced clustering of solute atoms. Nature Communications, 2020, 11, 3934.	12.8	11
14	In-situ Atomic-scale Visualization of Autocatalytic Reduction of CuO with H ₂ . Microscopy and Microanalysis, 2020, 26, 3048-3050.	0.4	2
15	Facet-dependent Catalysis of CuNi Nanocatalysts toward 4-Nitrophenol Reduction Reaction. MRS Advances, 2020, 5, 1491-1496.	0.9	5
16	Surface-reaction induced structural oscillations in the subsurface. Nature Communications, 2020, 11, 305.	12.8	27
17	Reactions of CO2 and ethane enable CO bond insertion for production of C3 oxygenates. Nature Communications, 2020, 11, 1887.	12.8	49
18	Quinary Defect-Rich Ultrathin Bimetal Hydroxide Nanosheets for Water Oxidation. ACS Applied Materials & Damp; Interfaces, 2019, 11, 44018-44025.	8.0	15

XIAOBO CHEN

#	Article	IF	CITATIONS
19	Modulating the electronic structure of ultrathin layered double hydroxide nanosheets with fluorine: an efficient electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 14483-14488.	10.3	73
20	Screening of Fungi for Potential Application of Self-Healing Concrete. Scientific Reports, 2019, 9, 2075.	3.3	81
21	Defectsâ€Induced Inâ€Plane Heterophase in Cobalt Oxide Nanosheets for Oxygen Evolution Reaction. Small, 2019, 15, e1904903.	10.0	69
22	Atomic-Scale Mechanism of Unidirectional Oxide Growth. Advanced Functional Materials, 2019, 30, .	14.9	2
23	Interactions of fungi with concrete: Significant importance for bio-based self-healing concrete. Construction and Building Materials, 2018, 164, 275-285.	7.2	110
24	In-situ Atomic-Resolution Observations of Oxide-Reduction Induced Formation of Nano-Holes in Cu2O Thin Films. Microscopy and Microanalysis, 2018, 24, 1816-1817.	0.4	0
25	<i>In situ</i>)atomic-scale observation of inhomogeneous oxide reduction. Chemical Communications, 2018, 54, 7342-7345.	4.1	8