List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8590406/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultralight Layerâ€byâ€Layer Selfâ€Assembled MoS ₂ â€Polymer Modified Separator for Simultaneously Trapping Polysulfides and Suppressing Lithium Dendrites. Advanced Energy Materials, 2018, 8, 1802430.	19.5	170
2	Mesoporous Block Copolymer Nanoparticles with Tailored Structures by Hydrogenâ€Bondingâ€Assisted Selfâ€Assembly. Advanced Materials, 2012, 24, 1889-1893.	21.0	136
3	Effect of defects on thermal conductivity of graphene/epoxy nanocomposites. Carbon, 2018, 130, 295-303.	10.3	122
4	Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process. Polymer, 2006, 47, 7970-7979.	3.8	119
5	Monochromatic Visible Light "Photoinitibitor― Janus-Faced Initiation and Inhibition for Storage of Colored 3D Images. Journal of the American Chemical Society, 2014, 136, 8855-8858.	13.7	118
6	Ring-Shaped Morphology of "Crew-Cut―Aggregates from ABA Amphiphilic Triblock Copolymer in a Dilute Solution. Langmuir, 2004, 20, 3809-3812.	3.5	112
7	Responsive Block Copolymer Photonic Microspheres. Advanced Materials, 2018, 30, e1707344.	21.0	102
8	The effect of defects on the interfacial mechanical properties of graphene/epoxy composites. RSC Advances, 2017, 7, 46101-46108.	3.6	89
9	Synthesis of Electroactive Tetraanilineâ^'PEOâ^'Tetraaniline Triblock Copolymer and Its Self-Assembled Vesicle with Acidity Response. Langmuir, 2010, 26, 9386-9392.	3.5	75
10	Multi-Responsive Lanthanide-Based Hydrogel with Encryption, Naked Eye Sensing, Shape Memory, Self-Healing, and Antibacterial Activity. ACS Applied Materials & Interfaces, 2020, 12, 28539-28549.	8.0	71
11	Photoinitiation and Inhibition under Monochromatic Green Light for Storage of Colored 3D Images in Holographic Polymer-Dispersed Liquid Crystals. ACS Applied Materials & Interfaces, 2017, 9, 1810-1819.	8.0	69
12	Gelled microporous polymer electrolyte with low liquid leakage for lithium-ion batteries. Journal of Membrane Science, 2014, 454, 298-304.	8.2	64
13	3D Image Storage in Photopolymer/ZnS Nanocomposites Tailored by "Photoinitibitor― Macromolecules, 2015, 48, 2958-2966.	4.8	59
14	One-Step and Metal-Free Synthesis of Triblock Quaterpolymers by Concurrent and Switchable Polymerization. ACS Macro Letters, 2020, 9, 204-209.	4.8	59
15	Effect of Defects on the Mechanical and Thermal Properties of Graphene. Nanomaterials, 2019, 9, 347.	4.1	57
16	Injectable Adhesive Hydrogel as Photothermalâ€Derived Antigen Reservoir for Enhanced Antiâ€Tumor Immunity. Advanced Functional Materials, 2021, 31, 2010587.	14.9	54
17	Lewis pair catalyzed highly selective polymerization for the one-step synthesis of A _z C _y (AB) _x C _y A _z pentablock terpolymers. Polymer Chemistry, 2020, 11, 1691-1695.	3.9	44
18	Enhanced ion transport in polymer–ionic liquid electrolytes containing ionic liquid-functionalized nanostructured carbon materials. Carbon. 2015. 86. 86-97.	10.3	43

#	Article	IF	CITATIONS
19	Robust multi-responsive supramolecular hydrogel based on a mono-component host–guest gelator. Soft Matter, 2018, 14, 5213-5221.	2.7	43
20	Ultralow-Carbon Nanotube-Toughened Epoxy: The Critical Role of a Double-Layer Interface. ACS Applied Materials & Interfaces, 2018, 10, 1204-1216.	8.0	42
21	Water-soluble graphene grafted by poly(sodium 4-styrenesulfonate) for enhancement of electric capacitance. Nanotechnology, 2012, 23, 475704.	2.6	41
22	Precise Localization of Inorganic Nanoparticles in Block Copolymer Micellar Aggregates: From Center to Interface. Macromolecules, 2015, 48, 256-263.	4.8	39
23	Interdiffusion at Homopolymer/Random Copolymer Interfaces Investigated by Energy-Filtering Transmission Electron Microscopy. Macromolecules, 2007, 40, 7966-7972.	4.8	38
24	Giant Stability Enhancement of CsPbX ₃ Nanocrystal Films by Plasma-Induced Ligand Polymerization. ACS Applied Materials & amp; Interfaces, 2019, 11, 35270-35276.	8.0	36
25	High modulus and low-voltage driving nematic liquid-crystalline physical gels for light-scattering displays. Soft Matter, 2013, 9, 7718.	2.7	35
26	Study of Adhesion and Fracture of Polymer Laminates by Imaging of Interfaces. Macromolecular Rapid Communications, 2007, 28, 915-921.	3.9	34
27	Wholly Visible-Light-Responsive Host–Guest Supramolecular Gels Based on Methoxy Azobenzene and β-Cyclodextrin Dimers. Langmuir, 2020, 36, 7408-7417.	3.5	34
28	Highly thermally conductive yet mechanically robust composites with nacre-mimetic structure prepared by evaporation-induced self-assembly approach. Chemical Engineering Journal, 2021, 405, 126865.	12.7	34
29	Temperature dependence of surface composition and morphology in polymer blend film. Polymer, 2008, 49, 4456-4461.	3.8	33
30	Scalable Approach to Construct Self-Assembled Graphene-Based Films with An Ordered Structure for Thermal Management. ACS Applied Materials & Interfaces, 2018, 10, 41690-41698.	8.0	32
31	Kinetics of Surface Phase Separation for PMMA/SAN Thin Films Studied by in Situ Atomic Force Microscopy. Macromolecules, 2005, 38, 211-215.	4.8	29
32	Photomechanically Controlled Encapsulation and Release from pH-Responsive and Photoresponsive Microcapsules. Langmuir, 2015, 31, 5456-5463.	3.5	29
33	Iron-mediated AGET ATRP of methyl methacrylate in the presence of polar solvents as ligands. Journal of Polymer Science Part A, 2014, 52, 1020-1027.	2.3	28
34	Self-Assembly of Shaped Nanoparticles into Free-Standing 2D and 3D Superlattices. Small, 2016, 12, 499-505.	10.0	28
35	Well-structured holographic polymer dispersed liquid crystals by employing acrylamide and doping ZnS nanoparticles. Materials Chemistry Frontiers, 2017, 1, 294-303.	5.9	28
36	Dewetting and Phase Behaviors for Ultrathin Films of Polymer Blend. Macromolecular Rapid Communications, 2006, 27, 351-355.	3.9	27

#	Article	IF	CITATIONS
37	Insight into glass transition of cellulose based on direct thermal processing after plasticization by ionic liquid. Cellulose, 2015, 22, 89-99.	4.9	27
38	Synthesis of Yolk–Shell Polymeric Nanocapsules Encapsulated with Monodispersed Upconversion Nanoparticle for Dual-Responsive Controlled Drug Release. Macromolecules, 2018, 51, 10074-10082.	4.8	27
39	Reversible photo-responsive gel–sol transitions of robust organogels based on an azobenzene-containing main-chain liquid crystalline polymer. RSC Advances, 2020, 10, 3726-3733.	3.6	27
40	Surface phase separations of PMMA/SAN blends investigated by atomic force microscopy. Polymer, 2003, 44, 4035-4045.	3.8	26
41	Robust polyazobenzene microcapsules with photoresponsive pore channels and tunable release profiles. European Polymer Journal, 2012, 48, 41-48.	5.4	25
42	Iron-catalyzed AGET ATRP of methyl methacrylate using an alcohol as a reducing agent in a polar solvent. Dalton Transactions, 2014, 43, 16528-16533.	3.3	25
43	Liquid Crystalline Nanocolloids for the Storage of Electro-Optic Responsive Images. ACS Applied Materials & Interfaces, 2019, 11, 8612-8624.	8.0	25
44	Reaction-induced phase decomposition of thermoset/thermoplastic blends investigated by energy filtering transmission electron microscopy. Polymer, 2007, 48, 3749-3758.	3.8	24
45	Interfacial Entanglements between Glassy Polymers Investigated by Nanofractography with High-Resolution Scanning Electron Microscopy. Macromolecules, 2008, 41, 8063-8071.	4.8	24
46	Visible light-triggered gel-to-sol transition in halogen-bond-based supramolecules. Soft Matter, 2019, 15, 6411-6417.	2.7	24
47	Injectable zwitterionic thermosensitive hydrogels with low-protein adsorption and combined effect of photothermal-chemotherapy. Journal of Materials Chemistry B, 2020, 8, 10637-10649.	5.8	24
48	Film Thickness Dependence of Phase Separation and Dewetting Behaviors in PMMA/SAN Blend Films. Langmuir, 2010, 26, 14530-14534.	3.5	23
49	Composition Effect on Interplay between Phase Separation and Dewetting in PMMA/SAN Blend Ultrathin Films. Macromolecules, 2011, 44, 5318-5325.	4.8	23
50	Composition effect on dewetting of ultrathin films of miscible polymer blend. Polymer, 2009, 50, 4745-4752.	3.8	22
51	Highly diffractive, reversibly fast responsive gratings formulated through holography. RSC Advances, 2014, 4, 4420-4426.	3.6	22
52	Thermal and Photo Dual-Responsive Core–Shell Polymeric Nanocarriers with Encapsulation of Upconversion Nanoparticles for Controlled Anticancer Drug Release. Journal of Physical Chemistry C, 2019, 123, 10658-10665.	3.1	22
53	Precisely Tuning Helical Twisting Power via Photoisomerization Kinetics of Dopants in Chiral Nematic Liquid Crystals. Langmuir, 2018, 34, 700-708.	3.5	21
54	Hierarchical Hybrids of Carbon Nanotubes in Amphiphilic Poly(ethylene oxide)- <i>block</i> -polyaniline through a Facile Method: From Smooth to Thorny. Langmuir, 2013, 29, 3757-3764.	3.5	20

#	Article	IF	CITATIONS
55	Phase Behavior and Dewetting for Polymer Blend Films Studied by In Situ AFM and XPS:  From Thin to Ultrathin Films. Langmuir, 2007, 23, 11107-11111.	3.5	19
56	Mechanical and Dielectric Properties of a New Polymer Blend Composed of 1,2-Bis(vinylphenyl)ethane and Thermosetting Poly(phenylene ether) Copolymer Obtained from 2,6-Dimethylphenol and 2-Allyl-6-methylphenol. Polymer Journal, 2007, 39, 828-833.	2.7	19
57	Photomodulated Morphologies in Halogen Bond–Driven Assembly during Gel–Sol Transition. Macromolecular Rapid Communications, 2019, 40, 1800629.	3.9	19
58	Holographic polymer nanocomposites with ordered structures and improved electro-optical performance by doping POSS. Composites Part B: Engineering, 2019, 174, 107045.	12.0	18
59	A triple-stimuli responsive supramolecular hydrogel based on methoxy-azobenzene-grafted poly(acrylic acid) and β-cyclodextrin dimer. Polymer, 2021, 221, 123617.	3.8	18
60	Effect of ketyl radical on the structure and performance of holographic polymer/liquid-crystal composites. Science China Materials, 2019, 62, 1921-1933.	6.3	17
61	Visible Light Rewritable and Longâ€Lived Colors in Cholesteric Liquid Crystals: A Facile Coâ€Doping Strategy. Macromolecular Rapid Communications, 2019, 40, e1900037.	3.9	17
62	Carboxymethyl chitosan‒promoted luminescence of lanthanide metallogel and its application in assay of multiple metal ions. Carbohydrate Polymers, 2021, 263, 117986.	10.2	17
63	Amide group-containing polar solvents as ligands for iron-catalyzed atom transfer radical polymerization of methyl methacrylate. RSC Advances, 2015, 5, 43724-43732.	3.6	16
64	Highâ€Performance Photochromic Hydrogels for Rewritable Information Record. Macromolecular Rapid Communications, 2021, 42, e2000701.	3.9	16
65	Liquid Crystals under Confinement in Submicrometer Capsules. Langmuir, 2018, 34, 10955-10963.	3.5	15
66	Photo- and pH-responsive drug delivery nanocomposite based on o-nitrobenzyl functionalized upconversion nanoparticles. Polymer, 2021, 229, 123961.	3.8	15
67	Photomodulated Electro-optical Response in Self-Supporting Liquid Crystalline Physical Gels. Langmuir, 2018, 34, 7519-7526.	3.5	14
68	Reversible Redox Switching of Concurrent Luminescence and Visual Color Change Based on Lanthanide Metallogel. Langmuir, 2019, 35, 15344-15351.	3.5	14
69	Multiscale dewetting of triblock copolymer thin film induced by solvent vapor. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2874-2884.	2.1	13
70	Polymer–inorganic hybrid microparticles with hierarchical structures formed by interfacial instabilities of emulsion droplets. Soft Matter, 2012, 8, 2697.	2.7	13
71	Chirality-Enabled Liquid Crystalline Physical Gels with High Modulus but Low Driving Voltage. ACS Applied Materials & Interfaces, 2018, 10, 43184-43191.	8.0	13
72	Intrinsically Visible Light-Responsive Liquid Crystalline Physical Gels Driven by a Halogen Bond. Langmuir, 2020, 36, 11873-11879.	3.5	13

#	Article	IF	CITATIONS
73	Chain-length effect on binary superlattices of polymer-tethered nanoparticles. Materials Chemistry Frontiers, 2020, 4, 2089-2095.	5.9	13
74	Naked-eye sensing and target-guiding treatment of bacterial infection using pH-tunable multicolor luminescent lanthanide-based hydrogel. Journal of Colloid and Interface Science, 2022, 610, 731-740.	9.4	13
75	Z/E Effect on Phase Behavior of Main-Chain Liquid Crystalline Polymers Bearing AlEgens. Macromolecules, 2021, 54, 10740-10749.	4.8	13
76	Injectable Thermosensitive Iodine‣oaded Starchâ€ <i>g</i> â€poly(<i>N</i> â€isopropylacrylamide) Hydrogel for Cancer Photothermal Therapy and Antiâ€Infection. Macromolecular Rapid Communications, 2022, 43, e2200203.	3.9	13
77	Reactive polycarbonate/diallyl phthalate blends with high optical transparency, good flowability and high mechanical properties. Polymer, 2016, 91, 89-97.	3.8	12
78	A heat-set lanthanide metallogel capable of emitting stable luminescence under thermal, mechanical and water stimuli. Dalton Transactions, 2020, 49, 2827-2832.	3.3	12
79	Concurrent Solutionâ€Like Decoloration Rate and High Mechanical Strength from Polymerâ€Dispersed Photochromic Organogel. Macromolecular Rapid Communications, 2014, 35, 741-746.	3.9	11
80	Effect of Stone-Wales Defect on Mechanical Properties of Gr/epoxy Nanocomposites. Polymers, 2019, 11, 1116.	4.5	11
81	Concentration-dependent dye aggregation and disassembly triggered by the same artificial helical foldamer. Polymer, 2019, 170, 7-15.	3.8	11
82	Hydrogen bond driven self-supporting organogels from main-chain liquid crystalline polymers. Polymer, 2020, 188, 122148.	3.8	11
83	Synthesis and photo-responsive behaviors of hollow polyazobenzene micro-spheres. Science Bulletin, 2010, 55, 3441-3447.	1.7	10
84	Dissolved oxygen-assisted enhancing room temperature phosphorescence of palladium-porphyrin in micelle-hybridized supramolecular gels under UV irradiation. Dyes and Pigments, 2019, 170, 107654.	3.7	10
85	One-step preparation of multifunctional alginate microspheres loaded with <i>in situ</i> -formed gold nanostars as a photothermal agent. Materials Chemistry Frontiers, 2019, 3, 2018-2024.	5.9	10
86	High-strength cellulose films obtained by the combined action of shear force and surface selective dissolution. Carbohydrate Polymers, 2020, 233, 115883.	10.2	10
87	Light regulation and long-lived stability of RCB colors in cholesteric liquid crystal physical gels <i>via</i> a mixing strategy. Soft Matter, 2021, 17, 3216-3221.	2.7	9
88	Strain-optical behavior of polyethylene terephthalate film during uniaxial stretching investigated by Mueller matrix ellipsometry. Polymer, 2019, 182, 121842.	3.8	8
89	Nondestructive investigation on the nanocomposite ordering upon holography using Mueller matrix ellipsometry. European Polymer Journal, 2019, 110, 123-129.	5.4	8
90	Al3+ enhanced room temperature phosphorescence of Pd-porphyrin resided in hybrid supramolecular gels and used for detection of trace Hg2+ ions. Talanta, 2019, 194, 183-188.	5.5	7

Υονςςυι Liao

#	Article	IF	CITATIONS
91	Configurationâ€Dependent Liquid Crystal and Gel Behaviors of Tetraphenyletheneâ€Containing Mainâ€Chain Copolyesters. Macromolecular Rapid Communications, 2022, 43, e2200154.	3.9	7
92	Relationship between polymerization kinetics and microstructure in reactive polymer blends: An Avrami-Erofeev study. European Polymer Journal, 2018, 106, 72-78.	5.4	6
93	Concurrent helix extension and chirality enhancement for an artificial helical foldamer complexed with sterically hindered chiral molecules. Polymer, 2020, 188, 122135.	3.8	5
94	Luminescence sensitization of terbium-loaded supramolecular gels by hydroxybenzoic acids and used for salicylates sensing. Talanta, 2021, 225, 122061.	5.5	5
95	Helical tube triggered two-stage emission behavior for tetraphenylethene-functionalised hemicyanine dye: Better dispersion stronger fluorescence. Polymer, 2021, 225, 123771.	3.8	4
96	EFFECTS OF DIFFERENT ALCOHOLS ON PHOTOPOLYMERIZATION KINETICS, ELECTRO-OPTICAL PERFORMANCES OF POLYMER DISPERSED LIQUID CRYSTALS. Acta Polymerica Sinica, 2012, 012, 41-46.	0.0	4
97	Efficient preparation of all cellulose composite films using a plasticizing-rolling method. Composites Part A: Applied Science and Manufacturing, 2022, 158, 106968.	7.6	4
98	Peanut-Like Crystals in Polycarbonate/Plasticizer Blends. Macromolecular Chemistry and Physics, 2017, 218, 1600471.	2.2	3
99	Helix Induction and Inversion of Polymeric Foldamer Regulated by the Single Enantiomers. Macromolecular Rapid Communications, 2022, , 2200238.	3.9	2
100	Nano-silica enhanced liquid-crystalline composite gels. Chinese Science Bulletin, 2016, 61, 2155-2162.	0.7	1