Jian-Ping Lang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8590208/publications.pdf

Version: 2024-02-01

232 papers

10,305 citations

53 h-index 49909 87 g-index

235 all docs

235 docs citations

times ranked

235

6977 citing authors

#	Article	IF	CITATIONS
1	Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Research, 2022, 15, 310-316.	10.4	65
2	Assembly of a Zn(<scp>ii</scp>) coordination polymer of tetrapyridyl tetraene ligands for selective sensing of CrO ₄ ^{2â^'} and Fe ³⁺ in water <i>via</i> luminescence quenching and enhancement. CrystEngComm, 2022, 24, 1564-1572.	2.6	16
3	Tunable photosalient behaviours within coordination polymers <i>via </i> functional molecular prearrangements. Chemical Communications, 2022, 58, 2674-2677.	4.1	4
4	Route to the Structure-Controlled Synthesis of Fe Nanobelts and Their Oxygen Evolution Reaction Application. Inorganic Chemistry, 2022, 61, 3024-3028.	4.0	3
5	Construction of cluster-based supramolecular wire and rectangle. Dalton Transactions, 2022, , .	3.3	2
6	Flexible Vertex Engineers the Controlled Assembly of Distorted Supramolecular Tetrahedral and Octahedral Cages. Research, 2022, 2022, 9819343.	5.7	8
7	Engineering the Electronic Structures of Metal–Organic Framework Nanosheets via Synergistic Doping of Metal lons and Counteranions for Efficient Water Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 15133-15140.	8.0	23
8	Temperature-dependent chloride-mediated access to atom-precise silver thiolate nanoclusters. Science China Chemistry, 2022, 65, 1094-1099.	8.2	11
9	Engineering multiphasic MoSe2/NiSe heterostructure interfaces for superior hydrogen production electrocatalysis. Applied Catalysis B: Environmental, 2022, 312, 121434.	20.2	50
10	A hybrid catalyst for efficient electrochemical N2 fixation formed by decorating amorphous MoS3 nanosheets with MIL-101(Fe) nanodots. Science China Chemistry, 2022, 65, 885-891.	8.2	13
11	Controllable multiple-step configuration transformations in a thermal/photoinduced reaction. Nature Communications, 2022, 13 , .	12.8	32
12	Facile synthesis of the encapsulation of Co-based multimetallic alloys/oxide nanoparticles nirtogen-doped carbon nanotubes as electrocatalysts for the HER/OER. International Journal of Hydrogen Energy, 2022, 47, 27775-27786.	7.1	26
13	Butterfly and <scp>Nestâ€Shaped</scp> Tp*â€ <scp>Wâ€Cuâ€S</scp> Cluster Monomers and Dimers with Hexamethylenetetramine as Ligand: <scp>Anionâ€Dependent</scp> Structures and Nonlinear Optical Properties. Chinese Journal of Chemistry, 2021, 39, 647-654.	4.9	4
14	Ultrathin amorphous iron-doped cobalt-molybdenum hydroxide nanosheets for advanced oxygen evolution reactions. Nanoscale, 2021, 13, 3153-3160.	5.6	24
15	Tuning the configuration of the flexible metal–alkene-framework affords pure cycloisomers in solid state photodimerization. Chemical Communications, 2021, 57, 1129-1132.	4.1	13
16	Synthesis of the Platinum Nanoribbons Regulated by Fluorine and Applications in Electrocatalysis. Inorganic Chemistry, 2021, 60, 4366-4370.	4.0	5
17	Solvent-driven reversible transformation between electrically neutral thiolate protected Ag25 and Ag26 clusters. Science China Chemistry, 2021, 64, 948-952.	8.2	18
18	A setaria-shaped Pd/Ni-NC electrocatalyst for high efficient hydrogen evolution reaction. Chemical Engineering Journal Advances, 2021, 6, 100101.	5.2	9

#	Article	IF	Citations
19	Nanocrystal photocatalysts trigger stereoselective photocycloaddition. Chem Catalysis, 2021, 1, 13-15.	6.1	O
20	Heterobimetallic Clusterâ€Based Coordination Polymers: Assembly, Structures and Thirdâ€Order Nonlinear Optical Properties. Chemistry - an Asian Journal, 2021, 16, 2674-2680.	3.3	1
21	Self-supported CPs Materials for Photodegrading Toxic Organics in Water. Nanostructure Science and Technology, 2021, , 215-232.	0.1	1
22	One-dimensional and two-dimensional coordination polymers from cluster modular construction. CrystEngComm, 2021, 23, 3160-3166.	2.6	2
23	Interfacial Kinetics Regulation of MoS ₂ /Cu ₂ Se Nanosheets toward Superior Highâ€Rate and Ultralongâ€Lifespan Sodiumâ€Ion Half/Full Batteries. ChemSusChem, 2021, 14, 5304-5310.	6.8	9
24	Cobalt(II) and Nickel(II) Complexes of a PNN Type Ligand as Photoenhanced Electrocatalysts for the Hydrogen Evolution Reaction. Inorganic Chemistry, 2020, 59, 1038-1045.	4.0	14
25	Coordination-Driven Stereospecific Control Strategy for Pure Cycloisomers in Solid-State Diene Photocycloaddition. Journal of the American Chemical Society, 2020, 142, 700-704.	13.7	90
26	The Covalent and Coordination Co-Driven Assembly of Supramolecular Octahedral Cages with Controllable Degree of Distortion. Journal of the American Chemical Society, 2020, 142, 13356-13361.	13.7	41
27	Ultrathin sulfate-intercalated NiFe-layered double hydroxide nanosheets for efficient electrocatalytic oxygen evolution. RSC Advances, 2020, 10, 12145-12150.	3.6	23
28	Conjugated nanoporous polycarbazole bearing a cobalt complex for efficient visible-light driven hydrogen evolution. New Journal of Chemistry, 2020, 44, 8736-8742.	2.8	1
29	Nickel-Catalyzed Sonogashira C(sp)–C(sp ²) Coupling through Visible-Light Sensitization. Journal of Organic Chemistry, 2020, 85, 9201-9212.	3.2	46
30	Ultrafast Luminescent Light-Up Guest Detection Based on the Lock of the Host Molecular Vibration. Journal of the American Chemical Society, 2020, 142, 6690-6697.	13.7	185
31	The solvent-induced isomerization of silver thiolate clusters with symmetry transformation. Chemical Communications, 2020, 56, 3649-3652.	4.1	12
32	Reversible Solid-State Phase Transitions between Au–P Complexes Accompanied by Switchable Fluorescence. Inorganic Chemistry, 2020, 59, 3072-3078.	4.0	11
33	<i>In situ</i> surface-derivation of AgPdMo/MoS ₂ nanowires for synergistic hydrogen evolution catalysis in alkaline solution. Nanoscale, 2020, 12, 6472-6479.	5.6	9
34	Recent advances in pristine tri-metallic metal–organic frameworks toward the oxygen evolution reaction. Nanoscale, 2020, 12, 4816-4825.	5.6	83
35	Iron-doped NiCo-MOF hollow nanospheres for enhanced electrocatalytic oxygen evolution. Nanoscale, 2020, 12, 14004-14010.	5.6	36
36	In Situ Generation of Bifunctional Fe-Doped MoS ₂ Nanocanopies for Efficient Electrocatalytic Water Splitting. Inorganic Chemistry, 2019, 58, 11202-11209.	4.0	84

#	Article	IF	Citations
37	A hierarchically-assembled Fe–MoS ₂ /Ni ₃ S ₂ /nickel foam electrocatalyst for efficient water splitting. Dalton Transactions, 2019, 48, 12186-12192.	3.3	40
38	Metal complexes with the zwitterion 4-(trimethylammonio)benzenethiolate: Synthesis, structures and applications. Coordination Chemistry Reviews, 2019, 397, 28-53.	18.8	25
39	Ligand-controlled phosphine-free Co(II)-catalysed cross-coupling of secondary and primary alcohols. Tetrahedron, 2019, 75, 130640.	1.9	23
40	Visibleâ€Lightâ€Enhanced Suzuki–Miyaura Reactions of Aryl Chlorides in Water with Pd NPs Supported on a Conjugated Nanoporous Polycarbazole. ChemSusChem, 2019, 12, 1421-1427.	6.8	25
41	Regioselective Photochemical Cycloaddition Reactions of Diolefinic Ligands in Coordination Polymers. Chemistry - an Asian Journal, 2019, 14, 3635-3641.	3.3	6
42	Fine-Tuning of Luminescence through Changes in Au–S Bond Lengths as a Function of Temperature or Solvent. Inorganic Chemistry, 2019, 58, 8533-8540.	4.0	17
43	Isoreticular Tp*–W–Cu–S cluster-based one-dimensional coordination polymers with an uncommon [Tp*WS ₃ Cu ₂] + [Cu] combination and their third-order nonlinear optical properties. CrystEngComm, 2019, 21, 3343-3348.	2.6	6
44	Visible light driven, nickel-catalyzed aryl esterification using a triplet photosensitiser thioxanthen-9-one. Organic Chemistry Frontiers, 2019, 6, 2353-2359.	4.5	45
45	Novel silver–phosphine coordination polymers incorporating a Wurster's blue – like radical cation with enhanced photoelectric properties. Chemical Communications, 2019, 55, 6599-6602.	4.1	9
46	A cationic [Ag $<$ sub $>$ 12 $<$ /sub $>$ S $<$ sub $>$ 12 $<$ /sub $>$] cluster-based 2D coordination polymer and its dye composite with enhanced photocurrent and dielectric responses. Dalton Transactions, 2019, 48, 8546-8550.	3.3	6
47	Fabrication of Photoactuators: Macroscopic Photomechanical Responses of Metal–Organic Frameworks to Irradiation by UV Light. Angewandte Chemie, 2019, 131, 9553-9558.	2.0	22
48	Nickel(II)-Based Two-Dimensional Coordination Polymer Displaying Superior Capabilities for Selective Sensing of Cr(VI) Ions in Water. Crystal Growth and Design, 2019, 19, 3518-3528.	3.0	54
49	Fabrication of Photoactuators: Macroscopic Photomechanical Responses of Metal–Organic Frameworks to Irradiation by UV Light. Angewandte Chemie - International Edition, 2019, 58, 9453-9458.	13.8	132
50	Coâ€Modified MoS ₂ Hybrids as Superior Bifunctional Electrocatalysts for Water Splitting Reactions: Integrating Multiple Active Components in One. Advanced Materials Interfaces, 2019, 6, 1900372.	3.7	22
51	A 3D [WS ₄ Cu ₄] ²⁺ cluster-based material with high iodine uptake capability. Dalton Transactions, 2019, 48, 6695-6699.	3.3	9
52	Reaction condition controlled nickel(<scp>ii</scp>)-catalyzed C–C cross-coupling of alcohols. Organic and Biomolecular Chemistry, 2019, 17, 3567-3574.	2.8	65
53	Largeâ€Scale, Bottomâ€Up Synthesis of Binary Metal–Organic Framework Nanosheets for Efficient Water Oxidation. Angewandte Chemie - International Edition, 2019, 58, 7051-7056.	13.8	386
54	Phosphine Ligandâ€Free Ruthenium Complexes as Efficient Catalysts for the Synthesis of Quinolines and Pyridines by Acceptorless Dehydrogenative Coupling Reactions. ChemCatChem, 2019, 11, 2500-2510.	3.7	54

#	Article	IF	CITATIONS
55	Morphology-dependent third-order optical nonlinearity of a 2D Co-based metal–organic framework with a porphyrinic skeleton. Chemical Communications, 2019, 55, 4873-4876.	4.1	34
56	Effective loading of cisplatin into a nanoscale UiO-66 metal–organic framework with preformed defects. Dalton Transactions, 2019, 48, 5308-5314.	3.3	45
57	Silver(I)â€Based Complexes Used as Highâ€Performance Photocatalysts for the Degradation of Organic Dyes in Water. European Journal of Inorganic Chemistry, 2019, 2019, 1816-1824.	2.0	11
58	Crystallographic and DFT studies on host-guest complexes consisting of zinc bisporphyrinates and 1-phenylethylamine. Journal of Coordination Chemistry, 2019, 72, 1156-1170.	2.2	2
59	Tetradecanuclear and Octadecanuclear Gold(I) Sulfido Clusters: Synthesis, Structures, and Luminescent Selective Tracking of Lysosomes in Living Cells. Inorganic Chemistry, 2019, 58, 3690-3697.	4.0	24
60	Reversible dielectric switching behavior of a 1D coordination polymer induced by photo and thermal irradiation. Chemical Communications, 2019, 55, 3532-3535.	4.1	24
61	Dimeric structures of zinc and copper complexes of malonamide-linked bisporphyrin. Inorganic Chemistry Communication, 2019, 102, 158-161.	3.9	3
62	MOF-derived cobalt–nickel phosphide nanoboxes as electrocatalysts for the hydrogen evolution reaction. Nanoscale, 2019, 11, 21259-21265.	5.6	81
63	Precise control of chirality transfer by adjusting the alkyl substituents of guests. Dyes and Pigments, 2019, 160, 692-699.	3.7	7
64	Two 2D Zinc(II) Coordination Polymers and Their Orange IV Composites: Preparation, Structures, and Photocurrent Responses. Crystal Growth and Design, 2019, 19, 211-218.	3.0	14
65	A Single-Crystal to Single-Crystal Conversion Scheme for a Two-Dimensional Metal–Organic Framework Bearing Linear Cd ₃ Secondary Building Units. Crystal Growth and Design, 2019, 19, 724-729.	3.0	24
66	Exogenous Photosensitizer-, Metal-, and Base-Free Visible-Light-Promoted C–H Thiolation via Reverse Hydrogen Atom Transfer. Organic Letters, 2019, 21, 237-241.	4.6	54
67	Assembly, Structure, and Properties of Six Coordination Polymers Based on 1,3,5-Tri-4-pyridyl-1,2-ethenylbenzene. Australian Journal of Chemistry, 2019, 72, 751.	0.9	1
68	Rectangle and [2]catenane from cluster modular construction. Chemical Communications, 2018, 54, 4168-4171.	4.1	25
69	Stoichiometrically controlled chirality inversion in zinc bisporphyrinate–monoamine complexes. Dalton Transactions, 2018, 47, 5503-5512.	3.3	11
70	Ligand-Controlled Copper(I)-Catalyzed Cross-Coupling of Secondary and Primary Alcohols to α-Alkylated Ketones, Pyridines, and Quinolines. Organic Letters, 2018, 20, 608-611.	4.6	121
71	Synthesis, crystallographic characterization of a novel iron porphyrinate and its application as a photocatalyst for degradation of methylene blue under visible light irradiation. Inorganic Chemistry Communication, 2018, 90, 26-28.	3.9	6
72	Switchable Chemoselective Transfer Hydrogenations of Unsaturated Carbonyls Using Copper(I) N-Donor Thiolate Clusters. Journal of Organic Chemistry, 2018, 83, 1204-1215.	3.2	26

#	Article	IF	Citations
73	Controllable Fluorescence Switching of a Coordination Chain Based on the Photoinduced Single-Crystal-to-Single-Crystal Reversible Transformation of a <i>syn</i> -[2.2]Metacyclophane. Inorganic Chemistry, 2018, 57, 849-856.	4.0	67
74	Preparation of carbon-based AuAg alloy nanoparticles by using the heterometallic [Au ₄ Ag ₄] cluster for efficient oxidative coupling of anilines. Dalton Transactions, 2018, 47, 5780-5788.	3.3	10
75	Nanoscale Trimetallic Metal–Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2018, 130, 1906-1910.	2.0	134
76	Nanoscale Trimetallic Metal–Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2018, 57, 1888-1892.	13.8	536
77	Câ€N Bond Formation Catalyzed by Ruthenium Nanoparticles Supported on Nâ€Doped Carbon via Acceptorless Dehydrogenation to Secondary Amines, Imines, Benzimidazoles and Quinoxalines. ChemCatChem, 2018, 10, 5627-5636.	3.7	52
78	Post-synthetic Modification of a Two-Dimensional Metal–Organic Framework via Photodimerization Enables Highly Selective Luminescent Sensing of Aluminum(III). Inorganic Chemistry, 2018, 57, 13453-13460.	4.0	67
79	Smoothing the single-crystal to single-crystal conversions of a two-dimensional metal–organic framework <i>via</i> the hetero-metal doping of the linear trimetallic secondary building unit. Dalton Transactions, 2018, 47, 13722-13729.	3.3	16
80	Guest-Induced Switchable Breathing Behavior in a Flexible Metal–Organic Framework with Pronounced Negative Gas Pressure. Inorganic Chemistry, 2018, 57, 8627-8633.	4.0	54
81	Assembly of silver-oxo complexes based on <i>N</i> -diphenylphosphanylmethyl-3-aminopyridine and their structures, photocatalysis and photocurrent responses. CrystEngComm, 2018, 20, 4049-4057.	2.6	8
82	A Zn(II)-based 1D coordination polymer: Temperature-induced SCSC transformation and selective sorption of Congo Red. Polyhedron, 2018, 154, 47-53.	2.2	4
83	Capturing the Organic Species Derived from the C–C Cleavage and in Situ Oxidation of 1,2,3,4-Tetra(pyridin-4-yl)cyclobutane by [CuCN] _{<i>n</i>2018, 57, 9160-9166.}	4.0	9
84	Zn-based metal–organic frameworks (MOFs) of pyridinemethanol–carboxylate conjugated ligands: Deprotonation-dependent structures and CO2 adsorption. Polyhedron, 2018, 153, 218-225.	2.2	16
85	Co2 and Co3 Mixed Cluster Secondary Building Unit Approach toward a Three-Dimensional Metal-Organic Framework with Permanent Porosity. Molecules, 2018, 23, 755.	3.8	19
86	Covalent switching, involving divinylbenzene ligands within 3D coordination polymers, indicated by changes in fluorescence. Chemical Communications, 2018, 54, 5831-5834.	4.1	57
87	Stereoselective Solidâ€State Synthesis of Substituted Cyclobutanes Assisted by Pseudorotaxaneâ€like MOFs. Angewandte Chemie, 2018, 130, 12878-12883.	2.0	17
88	Carboxylate-Assisted Assembly of Zinc and Cadmium Coordination Complexes of 1,3,5-Tri-4-pyridyl-1,2-ethenylbenzene: Structures and Visible-Light-Induced Photocatalytic Degradation of Congo Red in Water. Crystal Growth and Design, 2018, 18, 6172-6184.	3.0	37
89	Stereoselective Solidâ€State Synthesis of Substituted Cyclobutanes Assisted by Pseudorotaxaneâ€like MOFs. Angewandte Chemie - International Edition, 2018, 57, 12696-12701.	13.8	103
90	Evaluating the component contribution to nonlinear optical performances using stable [Ni ₄ O ₄] cuboidal clusters as models. Dalton Transactions, 2018, 47, 8865-8869.	3.3	12

#	Article	IF	Citations
91	Efficient alkylation of ketones with primary alcohols catalyzed by ruthenium(II)/P,N ligand complexes. Tetrahedron, 2017, 73, 2374-2381.	1.9	31
92	Ligand-Free RuCl ₃ -Catalyzed Alkylation of Methylazaarenes with Alcohols. Journal of Organic Chemistry, 2017, 82, 4113-4120.	3.2	54
93	Deciphering the Structural Relationships of Five Cd-Based Metal–Organic Frameworks. Inorganic Chemistry, 2017, 56, 6522-6531.	4.0	41
94	Tungsten(VI)–Copper(I)–Sulfur Cluster-Supported Metal–Organic Frameworks Bridged by <i>in Situ</i> Click-Formed Tetrazolate Ligands. Inorganic Chemistry, 2017, 56, 5669-5679.	4.0	33
95	A crystalline zinc(<scp>ii</scp>) complex showing hollow hexagonal tubular morphology evolution, selective dye absorption and unique response to UV irradiation. Chemical Communications, 2017, 53, 5515-5518.	4.1	25
96	1,4-Bis(2-(pyridin-4-yl)vinyl)naphthalene and Its Zinc(II) Coordination Polymers: Synthesis, Structural Characterization, and Selective Luminescent Sensing of Mercury(II) Ion. Crystal Growth and Design, 2017, 17, 3948-3959.	3.0	65
97	A cuboidal [Ni ₄ O ₄] cluster as a precursor for recyclable, carbon-supported nickel nanoparticle reduction catalysts. Dalton Transactions, 2017, 46, 7154-7158.	3.3	15
98	Luminescent Zn(II) Coordination Polymers for Highly Selective Sensing of Cr(III) and Cr(VI) in Water. Inorganic Chemistry, 2017, 56, 4668-4678.	4.0	218
99	Acceptorless Dehydrogenation of Alcohols Catalyzed by Cu ^I <i>N</i> â€Heterocycle Thiolate Complexes. ChemCatChem, 2017, 9, 1113-1118.	3.7	39
100	Palladium(<scp>ii</scp>) and palladium(<scp>ii</scp>)â€"silver(<scp>i</scp>) complexes with N-heterocyclic carbene and zwitterionic thiolate mixed ligands: synthesis, structural characterization and catalytic properties. Dalton Transactions, 2017, 46, 1832-1839.	3.3	20
101	Cadmium(II) Coordination Polymers of 4-Pyr-poly-2-ene and Carboxylates: Construction, Structure, and Photochemical Double $[2+2]$ Cycloaddition and Luminescent Sensing of Nitroaromatics and Mercury(II) lons. Crystal Growth and Design, 2017, 17, 870-881.	3.0	83
102	Efficient ring-opening polymerization (ROP) of $\hat{l}\mu$ -caprolactone catalysed by isomeric pyridyl \hat{l}^2 -diketonate iron(<scp>iii</scp>) complexes. New Journal of Chemistry, 2017, 41, 14457-14465.	2.8	20
103	A Cationic Coordination Polymer and Its Orange II Anion-Exchanged Products: Isolation, Structural Characterization, Photocurrent Responses, and Dielectric Properties. Inorganic Chemistry, 2017, 56, 12542-12550.	4.0	25
104	Palladium(II) Chloride Complexes of N,N′-Disubstituted Imidazole-2-thiones: Syntheses, Structures, and Catalytic Performances in Suzuki–Miyaura and Sonogashira Coupling Reactions. Inorganic Chemistry, 2017, 56, 11230-11243.	4.0	51
105	[Cd(H ₂ O) ₆]@{Cd ₆ Cl ₄ (nico) ₁₂ [Hg(Tab) _{2 a heterometallic host–guest icosidodecahedron cage via hierarchical assembly. Dalton Transactions, 2017, 46, 14724-14727.}	2(ξ 3.3	4-Cl)] < sub> 4
106	Assembly of Silver(I)/N,N-Bis(diphenylphosphanylmethyl)-3-aminopyridine/Halide or Pseudohalide Complexes for Efficient Photocatalytic Degradation of Organic Dyes in Water. Crystal Growth and Design, 2017, 17, 4826-4834.	3.0	37
107	Chirality Transfer from Chiral Monoamines to an m-Phthalic Diamide-Linked Zinc Bisporphyrinate with a Benzylamide Substituent. Inorganic Chemistry, 2017, 56, 10204-10214.	4.0	11
108	Versatile thiomolybdate(thiotungstate)–copper–sulfide clusters and multidimensional polymers linked by cyanides. Coordination Chemistry Reviews, 2017, 350, 248-274.	18.8	48

#	Article	IF	CITATIONS
109	Luminescent cadmium(<scp>ii</scp>) coordination polymers of 1,2,4,5-tetrakis(4-pyridylvinyl)benzene used as efficient multi-responsive sensors for toxic metal ions in water. Dalton Transactions, 2017, 46, 16861-16871.	3.3	57
110	Design of recyclable TEMPO derivatives bearing an ionic liquid moiety and N,N-bidentate group for highly efficient Cu(i)-catalyzed conversion of alcohols into aldehydes and imines. RSC Advances, 2016, 6, 51687-51693.	3.6	20
111	A unique cooperative catalytic system carrying metallic iron and 2-hydroxyethyl 2-bromoisobutyrate for the controlled/living ring-opening polymerization of $\hat{l}\mu$ -caprolactone. RSC Advances, 2016, 6, 11400-11406.	3.6	8
112	Silver(<scp>i</scp>) complexes with a P–N hybrid ligand and oxyanions: synthesis, structures, photocatalysis and photocurrent responses. Dalton Transactions, 2016, 45, 9294-9306.	3.3	48
113	Assembly of [Tp*WS ₃ Cu ₂]-Supported Coordination Polymers from Linkers with a Unique 1¼-Pyridyl Bridging Mode and Their Enhanced Third-Order Nonlinear Optical Performances. Crystal Growth and Design, 2016, 16, 3206-3214.	3.0	21
114	Controlled formation of chiral networks and their reversible chiroptical switching behaviour by UV/microwave irradiation. Chemical Communications, 2016, 52, 7990-7993.	4.1	78
115	Rational construction of functional molybdenum (tungsten)â€"copperâ€"sulfur coordination oligomers and polymers from preformed cluster precursors. Chemical Society Reviews, 2016, 45, 4995-5019.	38.1	113
116	Highly selective detection of Hg ²⁺ and MeHgI by di-pyridin-2-yl-[4-(2-pyridin-4-yl-vinyl)-phenyl]-amine and its zinc coordination polymer. Inorganic Chemistry Frontiers, 2016, 3, 1297-1305.	6.0	56
117	Counterintuitive Solid-State Syntheses of Indium-Thiolate-Phen Cations as Efficient and Selective Fluorescent Biosensors for HIV-1 ds-DNA and Sudan Ebolavirus RNA Sequences. ChemistrySelect, 2016, 1, 2979-2987.	1.5	6
118	Two Coordination Polymers and Their Silver(I)â€Doped Species: Synthesis, Characterization, and High Catalytic Activity for the Photodegradation of Various Organic Pollutants in Water. European Journal of Inorganic Chemistry, 2016, 2016, 2508-2515.	2.0	20
119	Copper(<scp>i</scp>) 5-phenylpyrimidine-2-thiolate complexes showing unique optical properties and high visible light-directed catalytic performance. Dalton Transactions, 2016, 45, 17759-17769.	3.3	41
120	Phosphine ligand-free RuCl3-catalyzed reductive N-alkylation of aryl nitro compounds. Tetrahedron, 2016, 72, 4169-4176.	1.9	29
121	Ligand Coordination Site-Directed Assembly of Copper(I) Iodide Complexes of ((Pyridyl)-1-pyrazolyl)pyridine. Crystal Growth and Design, 2016, 16, 1617-1625.	3.0	54
122	Site-selective homo- and hetero-metallic doping of a 1D Zn-based coordination polymer to enhance the dimensionality and photocurrent responses. CrystEngComm, 2016, 18, 3048-3054.	2.6	18
123	Fabrication of yolk–shell Pd@ZIF-8 nanoparticles with excellent catalytic size-selectivity for the hydrogenation of olefins. CrystEngComm, 2016, 18, 1760-1767.	2.6	36
124	Diverse Tp*-Capped W–Cu–S Clusters from One-Pot Assembly Involving in Situ Thiolation of Phosphines. Inorganic Chemistry, 2016, 55, 1861-1871.	4.0	32
125	Metal–Organic Frameworks via Emissive Metal arboxylate Zwitterion Intermediates. ChemPlusChem, 2015, 80, 1231-1234.	2.8	15
126	Synthesis of Two Coordination Polymer Photocatalysts and Significant Enhancement of Their Catalytic Photodegradation Activity by Doping with Co2+lons. European Journal of Inorganic Chemistry, 2015, 2015, 1981-1988.	2.0	22

#	Article	IF	Citations
127	Observance of a large conformational change associated with the rotation of the naphthyl groups during the photodimerization of criss-cross aligned C bonds within a 2D coordination polymer. CrystEngComm, 2015, 17, 4903-4911.	2.6	26
128	One silver(I)/tetraphosphine coordination polymer showing good catalytic performance in the photodegradation of nitroaromatics in aqueous solution. Applied Catalysis B: Environmental, 2015, 168-169, 98-104.	20.2	129
129	Syntheses and structures of two gold(<scp>i</scp>) coordination compounds derived from P–S hybrid ligands and their efficient catalytic performance in the photodegradation of nitroaromatics in water. Dalton Transactions, 2015, 44, 5662-5671.	3.3	48
130	Heterometallic transition metal clusters and cluster-supported coordination polymers derived from Tp- and Tp*-based Mo(W) sulfido precursors. Coordination Chemistry Reviews, 2015, 293-294, 187-210.	18.8	65
131	Facile synthesis of a Ag(<scp>i</scp>)-doped coordination polymer with enhanced catalytic performance in the photodegradation of azo dyes in water. Journal of Materials Chemistry A, 2015, 3, 5908-5916.	10.3	117
132	Fabrication of hollow Cu ₂ O@CuO-supported Au–Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction. Journal of Materials Chemistry A, 2015, 3, 4578-4585.	10.3	89
133	Luminescent Two-Dimensional Coordination Polymer for Selective and Recyclable Sensing of Nitroaromatic Compounds with High Sensitivity in Water. Crystal Growth and Design, 2015, 15, 2753-2760.	3.0	128
134	Solvent effect-driven assembly of W/Cu/S cluster-based coordination polymers from the cluster precursor [Et ₄ N][Tp*WS ₃ (CuBr) ₃] and CuCN: isolation, structures and enhanced NLO responses. Dalton Transactions, 2015, 44, 130-137.	3.3	30
135	New approaches to the degradation of organic dyes, and nitro- and chloroaromatics using coordination polymers as photocatalysts. CrystEngComm, 2015, 17, 4741-4753.	2.6	74
136	Isolation of first row transition metal-carboxylate zwitterions. RSC Advances, 2015, 5, 42978-42989.	3.6	11
137	A Zn(<scp>ii</scp>) coordination polymer and its photocycloaddition product: syntheses, structures, selective luminescence sensing of iron(<scp>iii</scp>) ions and selective absorption of dyes. Dalton Transactions, 2015, 44, 18795-18803.	3.3	166
138	Formation of Zn(<scp>ii</scp>) and Pb(<scp>ii</scp>) coordination polymers of tetrakis(4-pyridyl)cyclobutane controlled by benzene and toluene. CrystEngComm, 2015, 17, 8345-8352.	2.6	12
139	A 1D anionic coordination polymer showing superior Congo Red sorption and its dye composite exhibiting remarkably enhanced photocurrent response. Chemical Communications, 2015, 51, 14893-14896.	4.1	113
140	A unique Zn(<scp>ii</scp>)-based MOF fluorescent probe for the dual detection of nitroaromatics and ketones in water. CrystEngComm, 2015, 17, 9404-9412.	2.6	78
141	Construction of Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) metal–organic frameworks of diimidazole and dicarboxylate mixed ligands for the catalytic photodegradation of rhodamine B in water. CrystEngComm, 2015, 17, 1935-1943.	2.6	48
142	Suzuki–Miyaura reactions promoted by a PdCl ₂ /sulfonateâ€tagged phenanthroline precatalyst in water. Applied Organometallic Chemistry, 2014, 28, 861-867.	3.5	25
143	Syntheses and structures of copper complexes of 3-(6-(1H-pyrazol-1-yl)pyridin-2-yl)pyrazol-1-ide and their excellent performance in the syntheses of nitriles and aldehydes. Dalton Transactions, 2014, 43, 14061.	3.3	35
144	Palladium(II)-catalyzed Suzuki–Miyaura reactions of arylboronic acid with aryl halide in water in the presence of 4-(benzylthio)-N,N,N-trimethybenzenammonium chloride. Tetrahedron, 2014, 70, 3385-3389.	1.9	20

#	Article	IF	CITATIONS
145	Ni(<scp>ii</scp>) tetraphosphine complexes as catalysts/initiators in the ring opening polymerization of ε-caprolactone. Dalton Transactions, 2014, 43, 1716-1723.	3.3	14
146	Three Zinc(II) Coordination Polymers Based on Tetrakis(4-pyridyl)cyclobutane and Naphthalenedicarboxylate Linkers: Solvothermal Syntheses, Structures, and Photocatalytic Properties. Crystal Growth and Design, 2014, 14, 240-248.	3.0	135
147	Regiospecific photodimerization reactions of an unsymmetrical alkene in two coordination compounds. CrystEngComm, 2014, 16, 76-81.	2.6	33
148	Six [Tp*WS3Cu2]-based clusters derived from [Et4N][Tp*WS3], Cu(i) salts and phosphine ligands: syntheses, structures and enhanced third-order NLO properties. Dalton Transactions, 2014, 43, 4734.	3.3	22
149	Synthesis and structure of a ferric complex of 2,6-di(1H-pyrazol-3-yl)pyridine and its excellent performance in the redox-controlled living ring-opening polymerization of $\hat{l}\mu$ -caprolactone. Dalton Transactions, 2014, 43, 8282.	3.3	47
150	Single-crystal-to-single-crystal transformation of a two-dimensional coordination polymer through highly selective [2+2] photodimerization of a conjugated dialkene. Chemical Communications, 2014, 50, 3173.	4.1	52
151	Construction of Cd(ii) coordination polymers used as catalysts for the photodegradation of organic dyes in polluted water. CrystEngComm, 2014, 16, 2158.	2.6	86
152	Efficient and Reusable Cul/1,10â€Phenanthrolineâ€Catalyzed Oxidative Decarboxylative Homocoupling of Arylpropiolic Acids in Aqueous DMF. European Journal of Organic Chemistry, 2014, 2014, 4817-4822.	2.4	22
153	In-situ X-ray diffraction snapshotting: Determination of the kinetics of a photodimerization within a single crystal. Scientific Reports, 2014, 4, 6815.	3.3	36
154	Degradation versus Expansion of the AgX Frameworks: Formation of Oligomeric and Polymeric Silver Complexes from Reactions of Bulk AgX with <i>N</i> , <i>N</i> ,ei>N,ei>Holighenylphosphanylmethyl)-2-aminopyridine. Crystal Growth and Design, 2013, 13, 2124-2134.	3.0	25
155	[Pb(Tab)2(4,4′-bipy)](PF6)2: two-step ambient temperature quantitative solid-state synthesis, structure and dielectric properties. Chemical Communications, 2013, 49, 9248.	4.1	33
156	[Cu ₃₀ (sub>16(mtpmt) ₁₂ (Î⅓ ₁₀ -S ₄)]: an unusual 30-membered copper(<scp>i</scp>) cluster derived from the Câ€"S bond cleavage and its use in heterogeneous catalysis. Chemical Communications, 2013, 49, 4259-4261.	4.1	74
157	Cd(II) MOFs based on cadmium/carboxylate units and 4,4′-bis(benzoimidazol-1-yl)bibenzene: syntheses, structures, and luminescence. Journal of Coordination Chemistry, 2013, 66, 2335-2350.	2.2	9
158	Assembly of new Mo/Cu/S clusters from [Et4N][Tp*MoS(S4)] and Cu(i) salts: syntheses, structures and third-order nonlinear optical properties. Dalton Transactions, 2013, 42, 9495.	3.3	30
159	Spacer length-directed construction of two-dimensional [MoS3Cu3]-based coordination polymers from a precursor cluster [PPh4][Cpâ^—MoS3(CuNCS)3] (Cpâ^—=Î-5-C5Me5) and 4-pyridyl-based ditopic ligands. Polyhedron, 2013, 52, 1457-1464.	2.2	6
160	[Cu <i>_nX_n</i>]â€Based Coordination Polymers with Bis(4â€iodoâ€1Hâ€pyrazolâ€1â€yl)methane and Bis(4â€iodoâ€3, 5â€dimethylâ€1Hâ€pyrazolâ€1â€yl)methane: Syntheses, Crystal Structures, and Luminescent Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 618-625.	Solyothe	rmal
161	Stepwise ligand transformations through [2+2] photodimerization and hydrothermal in situ oxidation reactions. Chemical Communications, 2013, 49, 2682.	4.1	67
162	[PyH][{TpMo(μ3-S)4Cu3}4(μ12-I)]: a unique tetracubane cluster derived from the S–S bond cleavage and the iodide template effects and its enhanced NLO performances. Chemical Communications, 2013, 49, 4836.	4.1	65

#	Article	IF	Citations
163	Novel [Tp*WS ₃ Cu ₂]-Based Coordination Compounds: Assembly, Crystal Structures, and Third-Order Nonlinear Optical Properties. Crystal Growth and Design, 2013, 13, 2530-2539.	3.0	37
164	Syntheses, crystal structures, and luminescence of coordination polymers [Cu(μ-Br)(μ-phpzm)] n , [{Cu(μ-SCN)}2(μ-phpzm)] n , and [(phpzm)Cu(μ-CN)] n (phpzm = bis(4-phenylpyrazol-1-yl)methane Coordination Chemistry, 2012, 65, 4203-4216.	e) 2Ja urnal	of
165	Assembly of two cluster-based coordination polymers with good NLO performance from one NLO-inactive precursor cluster [Et4N][Tp*W(Î⅓3–S)3(CuCl)3]. CrystEngComm, 2012, 14, 4027.	2.6	17
166	Formation of N-heterocyclic diphosphine ligands from Ag(i)-assisted condensation reactions between bdppeda and formaldehyde and their binuclear silver(i) complexes. Dalton Transactions, 2012, 41, 8447.	3.3	17
167	Oxidative polymerization of 2,6â€dimethylphenol to form poly(2,6â€dimethylâ€1,4â€phenylene oxide) in water through one waterâ€soluble copper(II) complex of a zwitterionic calix[4]arene. Journal of Polymer Science Part A, 2012, 50, 4864-4870.	2.3	15
168	Substituted groups-directed assembly of Cd(ii) coordination polymers based on 5-R-1,3-benzenedicarboxylate and 4,4'-bis(1-imidazolyl)bibenzene: syntheses, structures and photoluminescent properties. CrystEngComm, 2012, 14, 6064.	2.6	40
169	Activation and amplification of the third-order NLO and luminescent responses of a precursor cluster by a supramolecular approach. Chemical Communications, 2012, 48, 4480.	4.1	65
170	A Liquidâ€Liquid Interface Process for Fabricating TiO 2 Nanofiber Membrane with High Photocatalytic Activity. Chinese Journal of Chemistry, 2012, 30, 1469-1473.	4.9	7
171	Group 12 metal zwitterionic thiolate compounds: preparation and structural characterization. Dalton Transactions, 2012, 41, 6162.	3.3	14
172	Reactions of palladium dichloride with 4-(trimethylammonio)benzenethiolate and phosphine ligands. Inorganica Chimica Acta, 2012, 382, 43-51.	2.4	10
173	Using alcohols as alkylation reagents for 4-cyanopyridinium and N,N′-dialkyl-4,4′-bipyridinium and their one-dimensional iodoplumbates. CrystEngComm, 2011, 13, 243-250.	2.6	63
174	Four $[Tp*W(\hat{1}/43-S)3Cu3(\hat{1}/43-Br)]$ -based clusters: synthesis, structural characterization and third-order NLO properties. Dalton Transactions, 2011, 40, 7983.	3.3	16
175	Highly Efficient Separation of a Solid Mixture of Naphthalene and Anthracene by a Reusable Porous Metal–Organic Framework through a Single-Crystal-to-Single-Crystal Transformation. Journal of the American Chemical Society, 2011, 133, 11042-11045.	13.7	263
176	Construction of Halide-Bridged Tungsten-Copper-Sulfide Double Cubanelike Clusters from a New Precursor [(Tp*WS ₂) ₂ (ν-S ₂)]. Inorganic Chemistry, 2011, 50, 4493-4502.	4.0	29
177	One cationic dinuclear silver(I) complex of dppatc formed in situ by replacing ethylenediamine units of dppeda through aminothiocarbamide. Inorganic Chemistry Communication, 2011, 14, 1665-1668.	3.9	8
178	Binding of a Coordinatively Unsaturated Mercury(II) Thiolate Compound by Carboxylate Anions. Inorganic Chemistry, 2011, 50, 503-516.	4.0	22
179	Studies on solid state reactions of coordination compounds. XLVII. Solid state syntheses and crystal structures of cluster compounds {Cu3MoS3I} (PPh3)3S and {Cu3WS3Br} (PPh3)3S. Chinese Journal of Chemistry, 2010, 11, 21-29.	4.9	19
180	Studies on solid state reactions of coordination compounds. LI. Solid state syntheses of a family of Ag-Mo(W)-S cubane-like cluster compounds: Crystal structures of {Ag3MoS3I](PPh3)3S and {Ag3WS3Cl}(PPh3)3S·0.5P(S)Ph3·3H2O. Chinese Journal of Chemistry, 2010, 11, 126-136.	4.9	15

#	Article	IF	CITATIONS
181	Studies on solid state reactions of coordination compounds. LXIII. Solid state synthesis of a series of tetranuclear Mo(W)-Ag mixed-metal clusters. Crystal structures of [(n-Bu)4N]3[MoOS3Ag3Br4] and [(n-Bu)4N]3[WS4Ag3Cl4]. Chinese Journal of Chemistry, 2010, 11, 418-424.	4.9	7
182	Syntheses, Crystal Structures and Luminescent Properties of a Dimeric Complex [(bzdmpzm)Cu(µâ€NCS)] _{<i>n</i>} (bzdmpzm=Bis(4â€benzylâ€3,5â€dimethylâ€1 <i>H</i> à€pyrazolâ€1â€yl)methane). Chinese Journal of Chemistry 1373-1378.	, <mark>20</mark> 10, 28	,8
183	5,11,17,23â€Tetrakis[(<i>p</i> â€carboxyphenyl)azo]â€25,26,27,28â€tetrahydroxy Calix[4]arene: Crystal Structuand pH Sensing Properties. Chinese Journal of Chemistry, 2010, 28, 1829-1834.	ire 4.9	5
184	Iodineâ€Induced Solvothermal Formation of Viologen Iodobismuthates. European Journal of Inorganic Chemistry, 2010, 2010, 5326-5333.	2.0	63
185	Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformations of Two Threeâ€Dimensional Coordination Polymers through Regioselective [2+2] Photodimerization Reactions. Angewandte Chemie - International Edition, 2010, 49, 4767-4770.	13.8	329
186	How Does a Non- $\langle i \rangle C \langle i \rangle \langle sub \rangle 3 \langle sub \rangle -Symmetry Guest Molecule Fit into a \langle i \rangle C \langle i \rangle \langle sub \rangle 3 \langle sub \rangle -Symmetry Host Cavity?. Crystal Growth and Design, 2010, 10, 3-6.$	3.0	27
187	Construction of [Ag2X2]-based complexes from reactions of Ag(i) salts with N-diphenylphosphanylmethyl-4-aminopyridine: isolation, structures, and luminescent properties. Dalton Transactions, 2010, 39, 4213.	3.3	40
188	Unique assembly of low-dimensional viologen iodoplumbates and their improved semiconducting properties. Dalton Transactions, 2010, 39, 9476.	3.3	38
189	Synthesis and Structure of an Unprecedented Linear Pentanuclear Bismuth(III) Zwitterionic Thiolate Complex. European Journal of Inorganic Chemistry, 2009, 2009, 38-41.	2.0	10
190	Reactions of [Et ₄ N][Tp*W(μ ₃ â€S)(μâ€S) ₂ Â(CuSCN) ₂] wir Nitrogen Donor Ligands: Syntheses, Structures, and Thirdâ€Order Nonlinear Optical Properties. European Journal of Inorganic Chemistry, 2009, 2009, 4240-4247.	th 2.0	16
191	Two Cationic Copper(I) Catalysts with Nâ€Donor Ligands for the Polymerization of Methyl Methacrylate. Macromolecular Chemistry and Physics, 2009, 210, 1654-1660.	2.2	9
192	Syntheses, crystal structures and luminescent properties of two silver complexes of N,N,N′,N′-tetra(diphenylphosphanylmethyl)ethylene diamine. Inorganica Chimica Acta, 2009, 362, 3910-3914.	2.4	15
193	Two 1D [Cuxlx]-based coordination polymers of tetraphosphine ligands. Inorganic Chemistry Communication, 2009, 12, 1031-1034.	3.9	20
194	Monomeric, Dimeric and Polymeric W/Cu/S Clusters Based on [Et4N][Tp*W($\hat{l}^{1}/43$ -S)3(CuBr)3] and Various Nitrogen Donor Ligands. Inorganic Chemistry, 2009, 48, 2808-2817.	4.0	33
195	From trans-[(η5-C5Me5)2Mo2S2(μ-S)2] to [(η5-C5Me5)2Mo2(μ3-S)4(CuMeCN)2]2+ to [(η5-C5Me5)2Mo2(μ3-S)4Cu2]-based polymeric and dimeric clusters: syntheses, structures and enhanced third-order non-linear optical performances. Dalton Transactions, 2009, , 2578.	3.3	17
196	Formation of dimeric and polymeric W/Cu/S clusters via degradation or expansion of the cluster core in [Et4N]4[WS4Cu4l6]. Dalton Transactions, 2009, , 1411 .	3.3	53
197	Stepwise addition of CuNCS onto [Et4N] [Tp*WS3]: Design, syntheses, structures and third-order nonlinear optical properties. Dalton Transactions, 2009, , 3425.	3.3	31
198	Reactions of [Hg(Tab)2](PF6)2 [Tab = 4-(trimethylammonio)benzenethiolate] with NaX (X = Cl, NO2,) Tj ETQq0 0 Compounds. European Journal of Inorganic Chemistry, 2008, 2008, 2593-2600.	0 rgBT /0 [.] 2.0	verlock 10 T

#	Article	IF	Citations
199	Synthetic and structural chemistry of groups 11 and 12 metal complexes of the zwitterionic ammonium thiolate ligands. Coordination Chemistry Reviews, 2008, 252, 2026-2049.	18.8	52
200	Assembly of [(Î- ⁵ -C ₅ Me ₅)MoS ₃ Cu ₃]-Supported One-Dimensional Chains with Single, Double, Triple, and Quadruple Strands. Inorganic Chemistry, 2008, 47, 5332-5346.	4.0	66
201	Stepwise Guest Exchange in a Cluster-Supported Three-Dimensional Host. Crystal Growth and Design, 2008, 8, 399-401.	3.0	48
202	Binuclear Cluster-to-Cluster-Based Supramolecular Compounds: Design, Assembly, and Enhanced Third-Order Nonlinear Optical Performances of {[Et4N]2[MoOS3Cu2(μ-CN)]2·2aniline}n and {[Et4N]4[MoOS3Cu3CN(μ′-CN)]2(μ-CN)2}n. Crystal Growth and Design, 2008, 8, 253-258.	3.0	82
203	Solvent Effects on the Assembly of [Cu ₂ 1 ₂]- or [Cu ₄ 1 ₄ 3-Based Coordination Polymers: Isolation, Structures, and Luminescent Properties, Crystal Growth and Design, 2008, 8, 3810-3816.	3.0	125
204	[(Î- ⁵ -C ₅ Me ₅)MoS ₃ Cu ₃]-Based Supramolecular Assemblies from the [(Î- ⁵ -C ₅ Me ₅)MoS ₃ (CuNCS) ₃] _{- Cluster Anion and Multitopic Ligands with Different Symmetries. Inorganic Chemistry, 2007, 46,}	4.0	68
205	Reactions of a Tungsten Trisulfido Complex of Hydridotris(3,5-dimethylpyrazol-1-yl)borate (Tp*) [Et4N][Tp*WS3] with CuX (X = Cl, NCS, or CN):  Isolation, Structures, and Third-Order NLO Properties. Inorganic Chemistry, 2007, 46, 11381-11389.	4.0	44
206	Excited State Absorption Dynamics in Metal Cluster Polymer [WS4Cu3I(4-bpy)3]nSolution. Journal of Physical Chemistry B, 2007, 111, 7987-7993.	2.6	25
207	Protonolysis Reactions of [(Me3Si)2N]3Ln(μ-Cl)Li(thf)3 withtBuSH or EtSH: Isolation, Structures and Catalytic Properties of Dinuclear Complexes [{(Me3Si)2N}2Ln(μ-StBu)]2 and Tetranuclear Complexes [Li(thf)4][{(Me3Si)2N}4Ln4(μ4-SEt)(μ-SEt)8] (Ln = Pr, Sm). European Journal of Inorganic Chemistry, 2007, Homoa@and Hegerometallic Coordination Oligomers and Polymers Derived from the Preformed	2.0	12
208	Complexes [Cu(bdmpp)(MeCN) ₂](ClO ₄) ₂ , [Cu(bdmpp)(N ₃) ₂], and [Cu(bdmpp)(N ₃)(μâ€N ₃)] ₂ [bdmpp = 2,6â€bis(3,5â€dimethylâ€1 <i>H</i> Ài>Àpyrazolâ€1â€yl)pyridine]: Syntheses, Structures, and Redox Properties. Euro	2.0 opean	21
209	Synthesis, crystal structure and third-order nonlinear optical properties of a hexanuclear cluster [WOS3Cu2(4-tBuPy)2]2 (4-tBuPy=4-tert-butylpyridine). Journal of Molecular Structure, 2007, 829, 128-134.	3.6	14
210	Synthesis, crystal structures and third-order nonlinear optical properties of a new family of double incomplete cubane-like clusters [(i-5-C5Me5)2Mo2(i-43-S)3SCu2X(i-4-X)]2 (X=Clâ-3, Brâ-3, SCNâ-3) and cubane-like clusters [(i-5-C5Me5)2Mo2(i-43-S)4(CuX)2] (X=Brâ-3, SCNâ-3, CNâ-3). Journal of Organometallic Chemistry, 2007, 692, 2205-2215.	e _{1.8}	12
211	Toward Rational Construction of Gold, Goldâ^'Silver, and Goldâ^'Mercury String Complexes:  Syntheses, Structures, and Properties of [Au(Tab)2]2L2 (L = I and PF6), {[(Tab)2M][Au(CN)2]}2 (M = Au and Ag), and {[Hg(Tab)2][Au(CN)2]2} [Tab = 4-(Trimethylammonio)benzenethiolate]. Inorganic Chemistry, 2006, 45, 7671-7680.	4.0	53
212	Synthesis of Two Heterobimetallic Cluster Isomers [(Î-5-C5Me5)2Mo2(Î-43-S)3S(CuI)2] and [(Î-5-C5Me5)2Mo2(Î-43-S)4(CuI)2] fromtrans-[(Î-5-C5Me5)2Mo2(Î-4-S)2S2] and Theirtrans-to-cislsomerization, Structures, and Third-Order NLO Properties. Organometallics, 2006, 25, 4351-4357.	2.3	24
213	Assembly of a New Family of Mercury(II) Zwitterionic Thiolate Complexes from a Preformed Compound [Hg(Tab)2](PF6)2[Tab = 4-(Trimethylammonio)benzenethiolate]. Inorganic Chemistry, 2006, 45, 2568-2580.	4.0	45
214	Construction of $[(\hat{i}\cdot 5-C5Me5)WS3Cu3]$ -Based Supramolecular Compounds from Preformed Incomplete Cubane-Like Clusters [PPh4][$(\hat{i}\cdot 5-C5Me5)WS3(CuX)3$] (X = CN, Br). Inorganic Chemistry, 2006, 45, 4055-4064.	4.0	56
215	Mo(W)/Cu/S Cluster-Based Supramolecular Arrays Assembled from Preformed Clusters [Et4N]4[WS4Cu4l6] and [(n-Bu)4N]2[MoOS3Cu3X3] (X = I, SCN) with Flexible Ditopic Ligands. Inorganic Chemistry, 2006, 45, 10487-10496.	4.0	61
216	Syntheses, crystal structures, and third-order nonlinear optical properties of two novel Mo/Cu/S clusters: [MoS4Cu4(α-MePy)5Br2]·2(α-MePy)0.5 and {[MoS4Cu4(α-MePy)3Br](μ-Br)·(α-MePy)}n (α-MePy=α-methylpyridine). Journal of Organometallic Chemistry, 2005, 690, 394-402.	1.8	26

#	Article	IF	CITATIONS
217	Synthesis of Novel Binuclear Samarium Thiolate Complexes [(THF)3I2Sm(μ-SAr)]2 (Ar=Ph, 4-Me2NC6H4) and Crystal Structure of [(THF)3I2Sm(μ-S-4-Me2NC6H4)]2. Chinese Journal of Chemistry, 2005, 23, 1499-1502.	4.9	4
218	Formation of new organometallic W/Cu/S clusters from reactions of $[\{(\hat{i}\text{-}5\text{-}C5\text{Me5})\text{WS3}\}3\text{Cu7}(\text{MeCN})9](\text{PF6})4$ with donor ligands. Crystal structures and optical limiting properties of $[(\hat{i}\text{-}5\text{-}C5\text{Me5})\text{WS3}\text{Cu3}(\text{Py})6](\text{PF6})2$, $[(\hat{i}\text{-}5\text{-}C5\text{Me5})\text{WS3}\text{Cu3}\text{Br}(\text{PPh3})3](\text{PF6})$, and $[(\hat{i}\text{-}5\text{-}C5\text{Me5})\text{WS3}\text{Cu4}(\text{Py})\text{Cl}(\text{dppm})2](\text{PF6})2$. Journal of Organometallic Chemistry, 2005, 690, 4027-4035.	1.8	18
219	Acetic Acid Induced Self-Assembly of Supramolecular Compounds [Et4N]3[(WS4Cu2)2(\hat{l} -/4-CN)3]Â-2MeCN and [PPh4][WS4Cu3(\hat{l} -/4-CN)2]Â-MeCN from Preformed Clusters [A]2[WS4(CuCN)2] (A = Et4N, PPh4). Inorganic Chemistry, 2005, 44, 3664-3668.	4.0	52
220	{[WS4Cu4(4,4′-bpy)4][WS4Cu4l4(4,4′-bpy)2]}â^žâ€"An Unusual 3D Porous Coordination Polymer Formed from the Preformed Cluster[Et4N]4[WS4Cu4l6]. Angewandte Chemie - International Edition, 2004, 43, 4741-4745.	13.8	212
221	Syntheses, Crystal Structures and Optical Limiting Properties of Three Novel Organometallic Tungsten-Copper-Sulfur Clusters: [PPh4][(î·5-C5Me5)WS3(CuCN)2], [(î·5-C5Me5)WS3Cu2(PPh3)(î¼-CN)]2 and [PPh4][{(î·5-C5Me5)WS3Cu2(CN)(Py)}2(î¼-CN)]. European Journal of Inorganic Chemistry, 2004, 2004, 86-92.	2.0	33
222	Solid-State Reactions of AgAc with TabHPF6at Room Temperature ⰠIsolation and Structural Characterisation of an Unusual Octadecanuclear Silver Thiolate Cluster [Ag9(Tab)8(MeCN)8]2(PF6)18·4MeCN [Tab = 4-(trimethylammonio)benzenethiolate]. European Journal of Inorganic Chemistry, 2004, 2004, 4247-4252.	2.0	44
223	Isolation, structure and spectroscopic characterization of silver complexes of the zwitterionic thiolate Tab: $[Ag(Tab)2](PF6)$, $\{[Ag3(Tab)4](PF6)3\hat{A}\cdot 2DMF\}_n$, and $[Ag14(\hat{l}/46-S)(Tab)12(PPh3)8](PF6)12(Tab=4-(trimethylammonio)benzenethiolate)$. Journal of Organometallic Chemistry, 2004, 689, 1071-1077.	1.8	34
224	Structural aspects of copper(I) and silver(I) sulfide clusters of pentamethylcyclopentadienyl trisulfido tungsten(VI) and molybdenum(VI). Coordination Chemistry Reviews, 2003, 241, 47-60.	18.8	68
225	Assembly of a Supramolecular Cube, [(Cp*WS3Cu3)8Cl8(CN)12Li4] from a Preformed Incomplete Cubane-like Compound [PPh4][Cp*WS3(CuCN)3]. Journal of the American Chemical Society, 2003, 125, 12682-12683.	13.7	133
226	Synthesis, Structure and Optical Limiting (OL) Properties of a Novel Incomplete Cubaneâ€like Cluster [PPh ₄] [(Î- ⁵ â€C ₅ Me ₅) WS ₃ â€(CuBr) (Cul) ₂ (μâ€dppm)]. Chinese Journal of Chemistry, 2003, 21, 1591-1595.	4.9	0
227	Synthesis and structures of a triply-fused incomplete-cubane cluster $[\{(\hat{i}-5-C5Me5)WS3\}3Cu7(MeCN)9](PF6)4$ and a 2D polymer $[(\hat{i}-5-C5Me5)WS3Cu3Cl(MeCN)(pz)]PF6$ (pz =) Tj ETC	Qq1 1 0.78	8 4 9€14 rg8T
228	Synthesis of double incomplete-cubane clusters [PPh4]2[(gh5-C5Me5)MS3Cu3X3]2 (M = Mo, W; X = Cl,) Tj ETQq Acta, 1998, 283, 136-144.	0 0 0 rgBT 2.4	「Overlock 46
229	A New Entry into Molybdenum/Tungsten Sulfur Chemistry:Â Synthesis and Reactions of Mononuclear Sulfido Complexes of Pentamethylcyclopentadienylâ^'Molybdenum(VI) and â^'Tungsten(VI). Journal of the American Chemical Society, 1997, 119, 10346-10358.	13.7	120
230	Microwave Irradiation Synthesis of $Mo(W)/TI/S$ Linear Chains and Their Nonlinear Optical Properties in Solution. Inorganic Chemistry, 1996, 35, 7924-7927.	4.0	63
231	SYNTHESIS OF TWO NOVEL HETEROBIMETALLIC CLUSTER COMPOUNDS [NEt ₄] ₄] (M = Mo, W). CRYSTAL STRUCTURE OF [NEt ₄] ₄ [MoS ₄ Cu ₄ Cu ₄ I ₆]. lournal of Coordination Chemistry, 1993, 30, 173-182.	2.2	11
232	Coordination Polymers with Bipyridyl Diene and Triene Ligands: Synthesis, Structures and Luminescent Properties. Chemical Research in Chinese Universities, 0, , 1.	2.6	1