Raquel Hontecillas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8590150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploratory studies with NX-13: oral toxicity and pharmacokinetics in rodents of an orally active, gut-restricted first-in-class therapeutic for IBD that targets NLRX1. Drug and Chemical Toxicology, 2022, 45, 209-214.	2.3	15
2	Increasing the Density of Laboratory Measures for Machine Learning Applications. Journal of Clinical Medicine, 2021, 10, 103.	2.4	8
3	Identification of new regulatory genes through expression pattern analysis of a global RNA-seq dataset from a Helicobacter pyloriÂco-culture system. Scientific Reports, 2020, 10, 11506.	3.3	9
4	NLRX1 is a key regulator of immune signaling during invasive pulmonary aspergillosis. PLoS Pathogens, 2020, 16, e1008854.	4.7	16
5	High-resolution computational modeling of immune responses in the gut. GigaScience, 2019, 8, .	6.4	13
6	Multi-Resolution Sensitivity Analysis of Model of Immune Response to Helicobacter pylori Infection via Spatio-Temporal Metamodeling. Frontiers in Applied Mathematics and Statistics, 2019, 5, .	1.3	6
7	Activation of NLRX1 by NX-13 Alleviates Inflammatory Bowel Disease through Immunometabolic Mechanisms in CD4+ T Cells. Journal of Immunology, 2019, 203, 3407-3415.	0.8	25
8	Activation of LANCL2 by BT-11 Ameliorates IBD by Supporting Regulatory T Cell Stability Through Immunometabolic Mechanisms. Inflammatory Bowel Diseases, 2018, 24, 1978-1991.	1.9	17
9	NLRX1 Modulates Immunometabolic Mechanisms Controlling the Host–Gut Microbiota Interactions during Inflammatory Bowel Disease. Frontiers in Immunology, 2018, 9, 363.	4.8	42
10	From Nutritional Immunology to Drug Development. , 2018, , 41-56.		0
11	Preclinical Studies: Efficacy and Safety. , 2018, , 25-40.		Ο
12	NLRX1 Regulates Effector and Metabolic Functions of CD4+ T Cells. Journal of Immunology, 2017, 198, 2260-2268.	0.8	47
13	Cooperation of Gastric Mononuclear Phagocytes withHelicobacter pyloriduring Colonization. Journal of Immunology, 2017, 198, 3195-3204.	0.8	23
14	Agents and networks to model the dynamic interactions of intracellular transport. Cellular Logistics, 2017, 7, e1392401.	0.9	9
15	Modulation of Immune Signaling and Metabolism Highlights Host and Fungal Transcriptional Responses in Mouse Models of Invasive Pulmonary Aspergillosis. Scientific Reports, 2017, 7, 17096.	3.3	33
16	Systems-wide analyses of mucosal immune responses to <i>Helicobacter pylori</i> at the interface between pathogenicity and symbiosis. Gut Microbes, 2016, 7, 3-21.	9.8	34
17	Bistability analyses of CD4+ T follicular helper and regulatory cells during Helicobacter pylori infection. Journal of Theoretical Biology, 2016, 398, 74-84.	1.7	25
18	Modeling the Role of Lanthionine Synthetase C-Like 2 (LANCL2) in the Modulation of Immune Responses to Helicobacter pylori Infection. PLoS ONE, 2016, 11, e0167440.	2.5	15

RAQUEL HONTECILLAS

#	Article	IF	CITATIONS
19	Modeling the Regulatory Mechanisms by Which NLRX1 Modulates Innate Immune Responses to Helicobacter pylori Infection. PLoS ONE, 2015, 10, e0137839.	2.5	32
20	Novel insights on the role of CD8+ T cells and cytotoxic responses during <i>Helicobacter pylori</i> infection. Gut Microbes, 2014, 5, 357-362.	9.8	22
21	Systems Modeling of the Role of Interleukin-21 in the Maintenance of Effector CD4 ⁺ T Cell Responses during Chronic Helicobacter pylori Infection. MBio, 2014, 5, e01243-14.	4.1	52
22	Dietary abscisic acid ameliorates influenza-virus-associated disease and pulmonary immunopathology through a PPARÎ ³ -dependent mechanism. Journal of Nutritional Biochemistry, 2013, 24, 1019-1027.	4.2	36
23	Systems Modeling of Molecular Mechanisms Controlling Cytokine-driven CD4+ T Cell Differentiation and Phenotype Plasticity. PLoS Computational Biology, 2013, 9, e1003027.	3.2	111
24	Animal models of enteroaggregative <i><i>Escherichia coli</i></i> infection. Gut Microbes, 2013, 4, 281-291.	9.8	27
25	The Role of Peroxisome Proliferator-Activated Receptor \hat{I}^3 in Immune Responses to Enteroaggregative Escherichia coli Infection. PLoS ONE, 2013, 8, e57812.	2.5	14
26	Predictive Computational Modeling of the Mucosal Immune Responses during Helicobacter pylori Infection. PLoS ONE, 2013, 8, e73365.	2.5	53
27	ENteric Immunity SImulator: A Tool for In Silico Study of Gastroenteric Infections. IEEE Transactions on Nanobioscience, 2012, 11, 273-288.	3.3	34
28	Helicobacter pylori Colonization Ameliorates Glucose Homeostasis in Mice through a PPAR Î ³ -Dependent Mechanism. PLoS ONE, 2012, 7, e50069.	2.5	37
29	CD4+ T-cell responses and distribution at the colonic mucosa during Brachyspira hyodysenteriae-induced colitis in pigs. Immunology, 2005, 115, 127-135.	4.4	30
30	Activation of PPAR \hat{I}^3 and \hat{I}' by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology, 2004, 127, 777-791.	1.3	354
31	Differential requirements for proliferation of CD4+ and γÎ′+ T cells to spirochetal antigens. Cellular Immunology, 2003, 224, 38-46.	3.0	12