Chaofeng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8589913/publications.pdf Version: 2024-02-01

CHAOFENC LUL

#	Article	IF	CITATIONS
1	Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews, 2020, 120, 7795-7866.	23.0	950
2	Understanding electrochemical potentials of cathode materials in rechargeable batteries. Materials Today, 2016, 19, 109-123.	8.3	811
3	Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy and Environmental Science, 2019, 12, 2273-2285.	15.6	512
4	Impacts of Oxygen Vacancies on Zinc Ion Intercalation in VO ₂ . ACS Nano, 2020, 14, 5581-5589.	7.3	267
5	Mesocrystal MnO cubes as anode for Li-ion capacitors. Nano Energy, 2016, 22, 290-300.	8.2	189
6	Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate. Nano Energy, 2020, 70, 104519.	8.2	188
7	Fast and Reversible Li Ion Insertion in Carbonâ€Encapsulated Li ₃ VO ₄ as Anode for Lithiumâ€Ion Battery. Advanced Functional Materials, 2015, 25, 3497-3504.	7.8	173
8	Dual-ion batteries: The emerging alternative rechargeable batteries. Energy Storage Materials, 2020, 25, 1-32.	9.5	160
9	Exploiting Highâ€Performance Anode through Tuning the Character of Chemical Bonds for Liâ€lon Batteries and Capacitors. Advanced Energy Materials, 2017, 7, 1601127.	10.2	149
10	Self-doped V 4+ –V 2 O 5 nanoflake for 2 Li-ion intercalation with enhanced rate and cycling performance. Nano Energy, 2016, 22, 1-10.	8.2	143
11	Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Storage Materials, 2020, 29, 9-16.	9.5	139
12	rGO/SnS ₂ /TiO ₂ heterostructured composite with dual-confinement for enhanced lithium-ion storage. Journal of Materials Chemistry A, 2017, 5, 25056-25063.	5.2	136
13	A promising cathode for Li-ion batteries: Li3V2(PO4)3. Energy Storage Materials, 2016, 4, 15-58.	9.5	129
14	Energy storage through intercalation reactions: electrodes for rechargeable batteries. National Science Review, 2017, 4, 26-53.	4.6	122
15	Potassium Ammonium Vanadate with Rich Oxygen Vacancies for Fast and Highly Stable Zn-Ion Storage. ACS Nano, 2022, 16, 4588-4598.	7.3	118
16	Tunable Layered (Na,Mn)V ₈ O ₂₀ · <i>n</i> H ₂ O Cathode Material for Highâ€Performance Aqueous Zinc Ion Batteries. Advanced Science, 2020, 7, 2000083.	5.6	113
17	Enhanced Reversible Zinc Ion Intercalation in Deficient Ammonium Vanadate for High-Performance Aqueous Zinc-Ion Battery. Nano-Micro Letters, 2021, 13, 116.	14.4	111
18	Mo-doped LiV ₃ O ₈ nanorod-assembled nanosheets as a high performance cathode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 3547-3558.	5.2	102

CHAOFENG LIU

#	Article	lF	CITATIONS
19	Cryptomelane-type MnO2/carbon nanotube hybrids as bifunctional electrode material for high capacity potassium-ion full batteries. Nano Energy, 2018, 54, 106-115.	8.2	98
20	Enhanced storage of sodium ions in Prussian blue cathode material through nickel doping. Journal of Materials Chemistry A, 2017, 5, 9604-9610.	5.2	95
21	Kinetic surface control for improved magnesium-electrolyte interfaces for magnesium ion batteries. Energy Storage Materials, 2019, 22, 96-104.	9.5	95
22	Transparent and Flexible Self-Charging Power Film and Its Application in a Sliding Unlock System in Touchpad Technology. ACS Nano, 2016, 10, 8078-8086.	7.3	93
23	Facile synthesis of mesoporous V2O5 nanosheets with superior rate capability and excellent cycling stability for lithium ion batteries. Journal of Power Sources, 2015, 294, 1-7.	4.0	91
24	Chemically Bonding NiFe-LDH Nanosheets on rGO for Superior Lithium-Ion Capacitors. ACS Applied Materials & Interfaces, 2019, 11, 35977-35986.	4.0	88
25	Tailoring nanostructured transition metal phosphides for high-performance hybrid supercapacitors. Nano Today, 2021, 38, 101201.	6.2	86
26	MnO nanoparticles with cationic vacancies and discrepant crystallinity dispersed into porous carbon for Li-ion capacitors. Journal of Materials Chemistry A, 2016, 4, 3362-3370.	5.2	85
27	Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 7713-7723.	5.2	84
28	Hollow–Cuboid Li ₃ VO ₄ /C as High-Performance Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 680-688.	4.0	82
29	Aqueous Al-Ion Supercapacitor with V ₂ O ₅ Mesoporous Carbon Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 15573-15580.	4.0	64
30	Gradient Oxygen Vacancies in V ₂ O ₅ /PEDOT Nanocables for High-Performance Supercapacitors. ACS Applied Energy Materials, 2019, 2, 668-677.	2.5	58
31	Enhanced Electrochemical Properties of Sn-doped V2O5 as a Cathode Material for Lithium Ion Batteries. Electrochimica Acta, 2016, 222, 1831-1838.	2.6	51
32	V2O3/C nanocomposites with interface defects for enhanced intercalation pseudocapacitance. Electrochimica Acta, 2019, 318, 635-643.	2.6	51
33	Coherent Mn3O4-carbon nanocomposites with enhanced energy-storage capacitance. Nano Research, 2015, 8, 3372-3383.	5.8	49
34	High power high safety battery with electrospun Li3V2(PO4)3 cathode and Li4Ti5O12 anode with 95% energy efficiency. Energy Storage Materials, 2016, 5, 93-102.	9.5	46
35	Enhanced Electrochemical Properties of Li ₃ VO ₄ with Controlled Oxygen Vacancies as Liâ€lon Battery Anode. Chemistry - A European Journal, 2017, 23, 5368-5374. 	1.7	44
36	Impacts of Surface Energy on Lithium Ion Intercalation Properties of V ₂ O ₅ . ACS Applied Materials & Interfaces, 2016, 8, 19542-19549.	4.0	42

CHAOFENG LIU

#	Article	IF	CITATIONS
37	Effects of Preinserted Na Ions on Li-Ion Electrochemical Intercalation Properties of V ₂ O ₅ . ACS Applied Materials & Interfaces, 2016, 8, 24629-24637.	4.0	41
38	Highly Efficient Storage of Pulse Energy Produced by Triboelectric Nanogenerator in Li ₃ V ₂ (PO ₄) ₃ /C Cathode Li-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 862-870.	4.0	40
39	Effects of high surface energy on lithium-ion intercalation properties of Ni-doped Li3VO4. NPG Asia Materials, 2016, 8, e287-e287.	3.8	39
40	Nanosulfonated silica incorporated SPEEK/SPVdF-HFP polymer blend membrane for PEM fuel cell application. Ionics, 2020, 26, 3447-3458.	1.2	38
41	Understanding the electrochemical potential and diffusivity of MnO/C nanocomposites at various charge/discharge states. Journal of Materials Chemistry A, 2019, 7, 7831-7842.	5.2	34
42	Interface Reduction Synthesis of H ₂ V ₃ O ₈ Nanobelts–Graphene for High-Rate Li-Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 11391-11399.	1.5	31
43	Interphases, Interfaces, and Surfaces of Active Materials in Rechargeable Batteries and Perovskite Solar Cells. Advanced Materials, 2021, 33, e1905245.	11.1	30
44	Revealing the impacts of metastable structure on the electrochemical properties: The case of MnS. Journal of Power Sources, 2019, 431, 75-83.	4.0	27
45	Artificial interface stabilized LiNi0.80Co0.15Al0.05O2@Polysiloxane cathode for stable cycling lithium-ion batteries. Journal of Power Sources, 2020, 471, 228480.	4.0	26
46	Tailoring SPEEK/SPVdF- <i>co</i> -HFP/La ₂ Zr ₂ O ₇ Ternary Composite Membrane for Cation Exchange Membrane Fuel Cells. Industrial & Engineering Chemistry Research, 2020, 59, 4881-4894.	1.8	21
47	Polypyrrole coated δ-MnO ₂ nanosheet arrays as a highly stable lithium-ion-storage anode. Dalton Transactions, 2020, 49, 7903-7913.	1.6	19
48	A new anode material for high performance lithium-ion batteries: V ₂ (PO ₄)O/C. Journal of Materials Chemistry A, 2016, 4, 9789-9796.	5.2	18
49	Amorphous VPO4/C with the enhanced performances as an anode for lithium ion batteries. Journal of Materiomics, 2016, 2, 350-357.	2.8	16
50	Oxygenâ€deficient TiO ₂ Yolkâ€shell Spheres for Enhanced Lithium Storage Properties. Energy and Environmental Materials, 2022, 5, 238-244.	7.3	15
51	Effect of synthesis pH and EDTA on iron hexacyanoferrate for sodium-ion batteries. Sustainable Energy and Fuels, 2020, 4, 2884-2891.	2.5	11
52	Point defects-induced adsorption and diffusion of lithium on monolayer titanium disulfide: A first-principles study. Applied Surface Science, 2021, 553, 149448.	3.1	11
53	The effect of nitrogen annealing on lithium ion intercalation in nickel-doped lithium trivanadate. Science Bulletin, 2016, 61, 587-593.	4.3	10
54	Oxygen Vacancies Enhance Lithiumâ€lon Storage Properties of TiO ₂ Hierarchical Spheres. Batteries and Supercaps, 2021, 4, 1874-1880.	2.4	9

CHAOFENG LIU

#	Article	IF	CITATIONS
55	Stability and kinetics enhancement of hydrated vanadium oxide via sodium-ion pre-intercalation. Materials Today Energy, 2022, 28, 101063.	2.5	7
56	Nickel-Doped Lithium Trivanadate Nanosheets Synthesized by Hydrothermal Synthesis as High Performance Cathode Materials for Lithium Ion Batteries. Science of Advanced Materials, 2016, 8, 703-711.	0.1	5
57	FUNDAMENTALS OF RECHARGEABLE BATTERIES AND ELECTROCHEMICAL POTENTIALS OF ELECTRODE MATERIALS. , 2018, , 397-451.		3
58	Deciphering the Voltage Increase Code in V2O5 Cathode for Li-Ion Battery. ECS Meeting Abstracts, 2018, , .	0.0	0
59	Transition Metal Cations Stabilized Layered Vanadate Cathodes for Zinc-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
60	Transparent and Flexible Self-Charging Power Film and Its Application in a Sliding Unlock System in Touchpad Technology. ECS Meeting Abstracts, 2019, , .	0.0	0
61	Impacts of Interfaces, Interphases, and Defects in Battery Electrodes. , 2020, , .		0
62	Aqueous Multivalent Ion Batteries Built on Hydrated Vanadates. ECS Meeting Abstracts, 2020, MA2020-01, 226-226.	0.0	0