Xiang-Jing Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8589317/publications.pdf

Version: 2024-02-01

471509 677142 1,207 24 17 22 citations h-index g-index papers 26 26 26 1105 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhancing proton conductivity in Zr-MOFs through tuning metal cluster connectivity. Journal of Materials Chemistry A, 2022, 10, 1236-1240.	10.3	22
2	Metalloporphyrin functionalized multivariate IRMOF-74-IV analogs for photocatalytic CO2 reduction. Separation and Purification Technology, 2022, 292, 121080.	7.9	9
3	Trace removal of benzene vapour using double-walled metal–dipyrazolate frameworks. Nature Materials, 2022, 21, 689-695.	27.5	109
4	A stable Co(II)-based metal-organic framework with dual-functional pyrazolate-carboxylate ligand: Construction and CO2 selective adsorption and fixation. Chinese Chemical Letters, 2021, 32, 918-922.	9.0	27
5	In Situ Porphyrin Substitution in a Zr(IV)â€MOF for Stability Enhancement and Photocatalytic CO ₂ Reduction. Small, 2021, 17, e2005357.	10.0	84
6	Revealing the effect of anion-tuning in bimetallic chalcogenides on electrocatalytic overall water splitting. Nano Research, 2021, 14, 4548-4555.	10.4	29
7	A Practice of Reticular Chemistry: Construction of a Robust Mesoporous Palladium Metal–Organic Framework via Metal Metathesis. Journal of the American Chemical Society, 2021, 143, 9901-9911.	13.7	60
8	Chemically Stable Metal–Organic Frameworks: Rational Construction and Application Expansion. Accounts of Chemical Research, 2021, 54, 3083-3094.	15.6	167
9	Kinetically Controlled Reticular Assembly of a Chemically Stable Mesoporous Ni(II)-Pyrazolate Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 13491-13499.	13.7	97
10	A Green-Emission Metal–Organic Framework-Based Nanoprobe for Imaging Dual Tumor Biomarkers in Living Cells. ACS Applied Materials & Diterfaces, 2020, 12, 35375-35384.	8.0	32
11	A Cu(II) metal–organic framework based on an angular ligand with a bulky uncoordinated group: synthesis, structure, and gas adsorption. Journal of Coordination Chemistry, 2020, 73, 844-853.	2.2	O
12	Reaction duration-dependent formation of two Cu(<scp>ii</scp>)-MOFs with selective adsorption properties of C ₃ H ₄ over C ₃ H ₆ . Dalton Transactions, 2019, 48, 9225-9233.	3. 3	9
13	Single-Crystal Synthesis and Structures of Highly Stable Ni ₈ -Pyrazolate-Based Metal–Organic Frameworks. , 2019, 1, 20-24.		26
14	Constructing new metal–organic frameworks with complicated ligands from "One-Pot― <i>in situ</i> reactions. Chemical Science, 2019, 10, 3949-3955.	7.4	46
15	Integrating multiple adsorption sites and tortuous diffusion paths into a metal–organic framework for C ₃ H ₆ separation. Journal of Materials Chemistry A, 2019, 7, 25254-25257.	10.3	26
16	A Zn(II)-based pillar-layered metal–organic framework: Synthesis, structure, and CO2 selective adsorption. Polyhedron, 2019, 158, 283-289.	2.2	10
17	Unique T-Shaped Ligand as a New Platform for Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 430-436.	3.0	10
18	A Stable Zr(IV)-Based Metalâ€"Organic Framework Constructed from Câ•€ Bridged Di-isophthalate Ligand for Sensitive Detection of Cr ₂ O ₇ ^{2â€"} in Water. Inorganic Chemistry, 2018, 57, 14260-14268.	4.0	62

#	Article	IF	CITATION
19	Tuning Water Sorption in Highly Stable Zr(IV)-Metal–Organic Frameworks through Local Functionalization of Metal Clusters. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27868-27874.	8.0	54
20	Zr(IV)-Based Metal-Organic Framework with T-Shaped Ligand: Unique Structure, High Stability, Selective Detection, and Rapid Adsorption of Cr∢sub>2⟨/sub>O⟨sub>7⟨/sub>⟨sup>2–⟨/sup> in Water. ACS Applied Materials & Interfaces, 2018, 10, 16650-16659.	8.0	219
21	Two interpenetrated metal–organic frameworks with a slim ethynyl-based ligand: designed for selective gas adsorption and structural tuning. CrystEngComm, 2018, 20, 6018-6025.	2.6	29
22	Functionalized Baseâ€Stable Metalâ€"Organic Frameworks for Selective CO ₂ Adsorption and Proton Conduction. ChemPhysChem, 2017, 18, 3245-3252.	2.1	43
23	Synthesis of Passerini adducts from aldehydes and isocyanides under the auxiliary of water. Organic Chemistry Frontiers, 2015, 2, 1326-1333.	4.5	11
24	Yb(OTf) $<$ sub $>$ 3 $<$ /sub $>$ -Mediated Access to Furans from \hat{l}^2 -Ketothioamides via Eschenmoser Sulfide Contraction Reaction. Journal of Organic Chemistry, 2015, 80, 11999-12005.	3.2	26