Daryl L Davies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8589267/publications.pdf Version: 2024-02-01

NADVI L DAVIES

#	Article	IF	CITATIONS
1	Macrophage P2X4 receptors augment bacterial killing and protect against sepsis. JCI Insight, 2018, 3, .	2.3	82
2	Ethanol differentially affects ATP-gated P2X and P2X receptor subtypes expressed in oocytes. Neuropharmacology, 2005, 49, 243-253.	2.0	73
3	Ivermectin reduces alcohol intake and preference in mice. Neuropharmacology, 2012, 63, 190-201.	2.0	62
4	Molecular targets and mechanisms for ethanol action in glycine receptors. , 2010, 127, 53-65.		60
5	Implication of the Purinergic System in Alcohol Use Disorders. Alcoholism: Clinical and Experimental Research, 2011, 35, 584-594.	1.4	60
6	lvermectin Antagonizes Ethanol Inhibition in Purinergic P2X4 Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 720-728.	1.3	59
7	Evidence that ethanol acts on a target in Loop 2 of the extracellular domain of α1 glycine receptors. Journal of Neurochemistry, 2007, 102, 2097-2109.	2.1	58
8	P2X4 receptors (P2X4Rs) represent a novel target for the development of drugs to prevent and/or treat alcohol use disorders. Frontiers in Neuroscience, 2014, 8, 176.	1.4	55
9	Ethanol Sensitivity in ATP-Gated P2X Receptors Is Subunit Dependent. Alcoholism: Clinical and Experimental Research, 2002, 26, 773-778.	1.4	50
10	Ethanol Is a Fast Channel Inhibitor of P2X4 Receptors. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 171-179.	1.3	47
11	Sociocommunicative and Sensorimotor Impairments in Male P2X4-Deficient Mice. Neuropsychopharmacology, 2013, 38, 1993-2002.	2.8	47
12	Structural Models of Ligandâ€Gated Ion Channels: Sites of Action for Anesthetics and Ethanol. Alcoholism: Clinical and Experimental Research, 2014, 38, 595-603.	1.4	47
13	P2X4 Receptor Reporter Mice: Sparse Brain Expression and Feeding-Related Presynaptic Facilitation in the Arcuate Nucleus. Journal of Neuroscience, 2016, 36, 8902-8920.	1.7	47
14	Alcohol-Binding Sites in Distinct Brain Proteins: The Quest for Atomic Level Resolution. Alcoholism: Clinical and Experimental Research, 2011, 35, no-no.	1.4	41
15	Dihydromyricetin Protects the Liver via Changes in Lipid Metabolism and Enhanced Ethanol Metabolism. Alcoholism: Clinical and Experimental Research, 2020, 44, 1046-1060.	1.4	40
16	Contribution of P2X4 Receptors to Ethanol Intake in Male C57BL/6 Mice. Neurochemical Research, 2014, 39, 1127-1139.	1.6	39
17	Role of purinergic P2X4 receptors in regulating striatal dopamine homeostasis and dependent behaviors. Journal of Neurochemistry, 2016, 139, 134-148.	2.1	39
18	Ethanol differentially modulates P2X4 and P2X7 receptor activity and function in BV2 microglial cells. Neuropharmacology, 2018, 128, 11-21.	2.0	39

#	Article	IF	CITATIONS
19	Pharmacological insights into the role of P2X4 receptors in behavioural regulation: lessons from ivermectin. International Journal of Neuropsychopharmacology, 2013, 16, 1059-1070.	1.0	38
20	Biophysical Evidence for His57as a Proton-Binding Site in the Mammalian Intestinal Transporter hPepT1. Pharmaceutical Research, 2003, 20, 1911-1916.	1.7	37
21	Ethanol Potentiation of Clycine Receptors Expressed in Xenopus Oocytes Antagonized by Increased Atmospheric Pressure. Alcoholism: Clinical and Experimental Research, 2003, 27, 743-755.	1.4	35
22	Loop 2 Structure in Glycine and GABAA Receptors Plays a Key Role in Determining Ethanol Sensitivity. Journal of Biological Chemistry, 2009, 284, 27304-27314.	1.6	34
23	A point mutation in the ectodomainâ€transmembrane 2 interface eliminates the inhibitory effects of ethanol in P2X4 receptors. Journal of Neurochemistry, 2010, 112, 307-317.	2.1	34
24	Ethanol sensitivity in ATP-gated P2X receptors is subunit dependent. Alcoholism: Clinical and Experimental Research, 2002, 26, 773-8.	1.4	34
25	Targets for ethanol action and antagonism in Loop 2 of the extracellular domain of glycine receptors. Journal of Neurochemistry, 2008, 106, 1337-1349.	2.1	31
26	Purinergic Type 2 Receptors at GABAergic Synapses on Ventral Tegmental Area Dopamine Neurons Are Targets for Ethanol Action. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 196-205.	1.3	31
27	Tryptophan 46 is a site for ethanol and ivermectin action in P2X4 receptors. Purinergic Signalling, 2013, 9, 621-632.	1.1	31
28	Avermectins differentially affect ethanol intake and receptor function: implications for developing new therapeutics for alcohol use disorders. International Journal of Neuropsychopharmacology, 2014, 17, 907-916.	1.0	31
29	Effects of the abused solvent toluene on recombinant P2X receptors expressed in HEK293 cells. Molecular Brain Research, 2004, 125, 86-95.	2.5	30
30	Multiple sites of ethanol action in alpha1 and alpha2 glycine receptors suggested by sensitivity to pressure antagonism. Journal of Neurochemistry, 2004, 89, 1175-1185.	2.1	28
31	Sex and the Lab: An Alcoholâ€Focused Commentary on the <scp>NIH</scp> Initiative to Balance Sex in Cell and Animal Studies. Alcoholism: Clinical and Experimental Research, 2016, 40, 1182-1191.	1.4	28
32	Roles of ectodomain and transmembrane regions in ethanol and agonist action in purinergic P2X2 and P2X3 receptors. Neuropharmacology, 2008, 55, 835-843.	2.0	26
33	Mutagenesis and Cysteine Scanning of Transmembrane Domain 10 of the Human Dipeptide Transporter. Pharmaceutical Research, 2009, 26, 2358-2366.	1.7	25
34	A Charge Pair Interaction Between Arg282 in Transmembrane Segment 7 and Asp341 in Transmembrane Segment 8 of hPepT1. Pharmaceutical Research, 2006, 24, 66-72.	1.7	22
35	Preclinical development of moxidectin as a novel therapeutic for alcohol use disorder. Neuropharmacology, 2017, 113, 60-70.	2.0	22
36	<i>î±</i> 2 Subunit–Containing GABA _A Receptor Subtypes Are Upregulated and Contribute to Alcohol-Induced Functional Plasticity in the Rat Hippocampus. Molecular Pharmacology, 2017, 92, 101-112.	1.0	20

#	Article	IF	CITATIONS
37	P2X7 Receptor Antagonist A804598 Inhibits Inflammation in Brain and Liver in C57BL/6J Mice Exposed to Chronic Ethanol and High Fat Diet. Journal of NeuroImmune Pharmacology, 2019, 14, 263-277.	2.1	20
38	Recent Advances in the Discovery and Preclinical Testing of Novel Compounds for the Prevention and/or Treatment of Alcohol Use Disorders. Alcoholism: Clinical and Experimental Research, 2013, 37, 8-15.	1.4	19
39	Dopamine Receptor Blockade Attenuates Purinergic P2X4 Receptor-Mediated Prepulse Inhibition Deficits and Underlying Molecular Mechanisms. Frontiers in Cellular Neuroscience, 2019, 13, 331.	1.8	18
40	Antibiotic-induced disruption of commensal microbiome linked to increases in binge-like ethanol consumption behavior. Brain Research, 2020, 1747, 147067.	1.1	18
41	Roles for Loop 2 Residues of α1 Glycine Receptors in Agonist Activation. Journal of Biological Chemistry, 2008, 283, 27698-27706.	1.6	17
42	Charge and Geometry of Residues in the Loop 2 β Hairpin Differentially Affect Agonist and Ethanol Sensitivity in Glycine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 543-551.	1.3	17
43	A Pilot Study of the Safety and Initial Efficacy of Ivermectin for the Treatment of Alcohol Use Disorder. Alcoholism: Clinical and Experimental Research, 2016, 40, 1312-1320.	1.4	17
44	Multiday administration of ivermectin is effective in reducing alcohol intake in mice at doses shown to be safe in humans. NeuroReport, 2014, 25, 1018-1023.	0.6	16
45	Chronic ethanol exposure combined with high fat diet up-regulates P2X7 receptors that parallels neuroinflammation and neuronal loss in C57BL/6J mice. Journal of Neuroimmunology, 2015, 285, 169-179.	1.1	16
46	Preclinical evaluation of avermectins as novel therapeutic agents for alcohol use disorders. Psychopharmacology, 2018, 235, 1697-1709.	1.5	16
47	Reduced expression of purinergic P2X4 receptors increases voluntary ethanol intake in C57BL/6J mice. Alcohol, 2018, 68, 63-70.	0.8	16
48	Cross-Talk between P2X and NMDA Receptors. International Journal of Molecular Sciences, 2020, 21, 7187.	1.8	15
49	A newly developed anesthetic based on a unique chemical core. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15706-15715.	3.3	14
50	In vivo and in vitro hyperbaric studies in mice suggest novel sites of action for ethanol. Psychopharmacology, 1999, 141, 339-350.	1.5	12
51	Ethanol Enhances GABAA Receptor Function in Short Sleep and Long Sleep Mouse Brain Membranes. Alcoholism: Clinical and Experimental Research, 2001, 25, 478-483.	1.4	12
52	Glycine and GABAA Ultra-Sensitive Ethanol Receptors as Novel Tools for Alcohol and Brain Research. Molecular Pharmacology, 2014, 86, 635-646.	1.0	12
53	Oral delivery of ivermectin using a fast dissolving oral film: Implications for repurposing ivermectin as a pharmacotherapy for alcohol use disorder. Alcohol, 2015, 49, 553-559.	0.8	12
54	Low-Level Hyperbaric Antagonism of Ethanol's Anticonvulsant Property in C57BL/6J Mice. Alcoholism: Clinical and Experimental Research, 1994, 18, 1190-1195.	1.4	11

#	Article	IF	CITATIONS
55	Direct Evidence for a Cause-Effect Link Between Ethanol Potentiation of GABAA Receptor Function and Intoxication From Hyperbaric Studies in C57, LS, and SS Mice. Alcoholism: Clinical and Experimental Research, 2001, 25, 1098-1106.	1.4	11
56	Modulation of Hippocampal GABAergic Neurotransmission and Gephyrin Levels by Dihydromyricetin Improves Anxiety. Frontiers in Pharmacology, 2020, 11, 1008.	1.6	11
57	Direct Antagonism of Ethanol's Effects On GABAA Receptors by Increased Atmospheric Pressure. Alcoholism: Clinical and Experimental Research, 1998, 22, 1689-1697.	1.4	10
58	Cysteine scanning of transmembrane domain three of the human dipeptide transporter: Implications for substrate transport. Journal of Drug Targeting, 2007, 15, 218-225.	2.1	10
59	Identification of Dihydromyricetin and Metabolites in Serum and Brain Associated with Acute Anti-Ethanol Intoxicating Effects in Mice. International Journal of Molecular Sciences, 2021, 22, 7460.	1.8	10
60	Murine Drinking Models in the Development of Pharmacotherapies for Alcoholism: Drinking in the Dark and Two-bottle Choice. Journal of Visualized Experiments, 2019, , .	0.2	9
61	A Novel Dual Drug Approach That Combines Ivermectin and Dihydromyricetin (DHM) to Reduce Alcohol Drinking and Preference in Mice. Molecules, 2021, 26, 1791.	1.7	8
62	Functional Role of the Intracellular Loop Linking Transmembrane Domains 6 and 7 of the Human Dipeptide Transporter hPEPT1. Journal of Membrane Biology, 2010, 238, 43-49.	1.0	7
63	Low-Level Hyperbaric Exposure Antagonizes Locomotor Effects of Ethanol and n-Propanol But Not Morphine in C57BL Mice. Alcoholism: Clinical and Experimental Research, 1995, 19, 693-700.	1.4	6
64	Effects of Posttraining Ethanol on an Appetitive Task. Neurobiology of Learning and Memory, 2001, 75, 111-120.	1.0	6
65	Benzodiazepine agonist and inverse agonist coupling in GABAA receptors antagonized by increased atmospheric pressure. European Journal of Pharmacology, 2003, 469, 37-45.	1.7	6
66	Manipulations of extracellular Loop 2 in α1 GlyR ultra-sensitive ethanol receptors (USERs) enhance receptor sensitivity to isoflurane, ethanol, and lidocaine, but not propofol. Neuroscience, 2015, 297, 68-77.	1.1	6
67	Residues in Transmembrane Segments of the P2X4 Receptor Contribute to Channel Function and Ethanol Sensitivity. International Journal of Molecular Sciences, 2020, 21, 2471.	1.8	6
68	Differential effects of propofol and ethanol on P2X4 receptors expressed in Xenopus oocytes. International Congress Series, 2005, 1283, 285-287.	0.2	5
69	A novel pharmacotherapy approach using P-glycoprotein (PGP/ABCB1) efflux inhibitor combined with ivermectin to reduce alcohol drinking and preference in mice. Alcohol, 2020, 86, 1-8.	0.8	5
70	Dihydromyricetin improves social isolation-induced cognitive impairments and astrocytic changes in mice. Scientific Reports, 2022, 12, 5899.	1.6	5
71	Pressure-sensitive and -insensitive coupling in γ-aminobutyric acid a receptors. Psychopharmacology, 2001, 157, 401-410.	1.5	4
72	Moxidectin Effects on Gut Microbiota of Wistar-Kyoto Rats: Relevance to Depressive-Like Behavior. Clinical Pharmacology and Translational Medicine, 2019, 3, 134-142.	0.3	4

#	Article	IF	CITATIONS
73	Antialcohol Effects of Dihydromyricetin in Combination With Other Flavonoids. Natural Product Communications, 2020, 15, 1934578X2094625.	0.2	3
74	The Importance of Animals in Advancing Research on Alcohol Use Disorders. Alcoholism: Clinical and Experimental Research, 2015, 39, 575-578.	1.4	2
75	Utilizing an Orally Dissolving Strip for Pharmacological and Toxicological Studies: A Simple and Humane Alternative to Oral Gavage for Animals. Journal of Visualized Experiments, 2016, , e53770.	0.2	2
76	Ethanol antagonizes P2X4 receptors in ventral tegmental area neurons. NeuroReport, 2020, 31, 936-941.	0.6	2
77	Ethanol Inhibits Functional Activity of the Human Intestinal Dipeptide Transporter hPepT1 Expressed in Xenopus Oocytes. Alcoholism: Clinical and Experimental Research, 2008, 32, 777-784.	1.4	1
78	The Avermectin Family as Potential Therapeutic Compounds for Alcohol Use Disorder: Implications for Using P2X4 Receptor as a Drug-Screening Platform. , 2019, , 661-670.		1
79	The macrocyclic lactones ivermectin and moxidectin show differential effects on rotational behavior in the 6-hydroxydopamine mouse model of Parkinson's disease. Behavioural Brain Research, 2020, 393, 112804.	1.2	1
80	Ethanol Enhances GABAA Receptor Function in Short Sleep and Long Sleep Mouse Brain Membranes. , 2001, 25, 478.		1
81	Direct Evidence for a Cause-Effect Link Between Ethanol Potentiation of GABAA Receptor Function and Intoxication From Hyperbaric Studies in C57, LS, and SS Mice. Alcoholism: Clinical and Experimental Research, 2001, 25, 1098-1106.	1.4	1
82	Propofol acts on different sites than ethanol and butanol in recombinant glycine receptors: Evidence from pressure studies. International Congress Series, 2005, 1283, 312-314.	0.2	0
83	Oral ivermectin treatment significantly reduces ethanol intake in male C57BL/6 mice (658.8). FASEB Journal, 2014, 28, 658.8,	0.2	0