Jill R Storry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8589020/publications.pdf

Version: 2024-02-01

218677 214800 2,578 94 26 h-index citations papers

47 g-index 2069 times ranked citing authors

96

96 all docs

96 docs citations

#	Article	IF	CITATIONS
1	Human radical scavenger $\hat{l}\pm 1$ -microglobulin protects against hemolysis in vitro and $\hat{l}\pm 1$ -microglobulin knockout mice exhibit a macrocytic anemia phenotype. Free Radical Biology and Medicine, 2021, 162, 149-159.	2.9	19
2	Novel single nucleotide deletion in <scp><i>ART4</i></scp> accounts for the Gy(aâ^') phenotype in a woman of <scp>Lebanese</scp> origin. Transfusion, 2021, 61, E39-E40.	1.6	0
3	Blood Group Databasesâ€"Creating Order Out of Chaos?. Transfusion Medicine Reviews, 2021, 35, 67-69.	2.0	O
4	Platelets inhibit erythrocyte invasion by Plasmodium falciparum at physiological platelet: erythrocyte ratios. Transfusion Medicine, 2021, , .	1.1	0
5	The Cromer blood group system: an update. Immunohematology, 2021, 37, 118-121.	0.2	2
6	Dimerization of small integral membrane protein 1 promotes cell surface presentation of the Vel blood group epitope. FEBS Letters, 2020, 594, 1261-1270.	2.8	2
7	The Role of α1-Microglobulin (A1M) in Erythropoiesis and Erythrocyte Homeostasis—Therapeutic Opportunities in Hemolytic Conditions. International Journal of Molecular Sciences, 2020, 21, 7234.	4.1	17
8	Disruption of the tumour-associated EMP3 enhances erythroid proliferation and causes the MAM-negative phenotype. Nature Communications, 2020, 11 , 3569.	12.8	18
9	Two Prevalent â^1⁄4100-kb <i>GYPB</i> Deletions Causative of the GPB-Deficient Blood Group MNS Phenotype S–s–U– in Black Africans. Transfusion Medicine and Hemotherapy, 2020, 47, 326-336.	1.6	8
10	Association of Maternal Regulatory Single Nucleotide Polymorphic CD99 Genotype with Preeclampsia in Pregnancies Carrying Male Fetuses in Ethiopian Women. International Journal of Molecular Sciences, 2020, 21, 5837.	4.1	10
11	Characterization of <i>GYP*Mur</i> and novel <i>GYP*Bun</i> â€like hybrids in Thai blood donors reveals a qualitatively altered s antigen. Vox Sanguinis, 2020, 115, 472-477.	1.5	7
12	The Xg blood group system: no longer forgotten. Immunohematology, 2020, 36, 4-6.	0.2	0
13	Automatic for the people: a rapidly evolving movement for the future of genotyping. Transfusion, 2019, 59, 3545-3547.	1.6	1
14	A large deletion spanning <i>XG</i> and <i>GYG2</i> constitutes a genetic basis of the Xg _{null} phenotype, underlying antiâ€Xg ^a production. Transfusion, 2019, 59, 1843-1849.	1.6	4
15	International Society of Blood Transfusion Working Party on Red Cell Immunogenetics and Blood Group Terminology: Report of the Dubai, Copenhagen and Toronto meetings. Vox Sanguinis, 2019, 114, 95-102.	1.5	75
16	Matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight mass spectrometry analysis of 36 blood group alleles among 396 T hai samples reveals regionâ€specific variants. Transfusion, 2018, 58, 1752-1762.	1.6	12
17	ABO zygosity, but not secretor or Fc receptor status, is a significant risk factor for IVIG-associated hemolysis. Blood, 2018, 131, 830-835.	1.4	19
18	More data needed to establish maternal breast milk IgG as cause for antiâ€D hemolytic disease of fetus and newborn. Transfusion, 2018, 58, 828-829.	1.6	3

#	Article	lF	Citations
19	Vox Sanguinis International Forum on typing and matching strategies in patients on antiâ€ <scp>CD</scp> 38 monoclonal therapy: summary. Vox Sanguinis, 2018, 113, 492-498.	1.5	4
20	International Forum on typing and matching strategies in patients on antiâ€ <scp>CD</scp> 38 monoclonal therapy. Vox Sanguinis, 2018, 113, e36.	1.5	0
21	Disruption of a GATA1-binding motif upstream of XG/PBDX abolishes Xga expression and resolves the Xg blood group system. Blood, 2018, 132, 334-338.	1.4	26
22	FUT1 mutations responsible for the H-deficient phenotype in the Polish population, including the first example of an abolished start codon. Blood Transfusion, 2018, 16, 101-104.	0.4	3
23	SMIM1 variants rs1175550 and rs143702418 independently modulate Vel blood group antigen expression. Scientific Reports, 2017, 7, 40451.	3.3	16
24	A and B antigen levels acquired by group O donorâ€derived erythrocytes following <scp>ABO</scp> â€nonâ€identical transfusion or minor <scp>ABO</scp> â€incompatible haematopoietic stem cell transplantation. Transfusion Medicine, 2017, 27, 181-191.	1.1	16
25	The Vel blood group system: a review. Immunohematology, 2017, 33, 56-59.	0.2	10
26	The Vel blood group system: a review. Immunohematology, 2017, 33, 56-59.	0.2	8
27	Erythrogene: a database for in-depth analysis of the extensive variation in 36 blood group systems in the 1000 Genomes Project. Blood Advances, 2016, 1, 240-249.	5.2	122
28	A novel RHCE*02 allele, containing the singleâ€nucleotide change c.460A>G, encodes weakened expression of C and e antigens. Transfusion, 2016, 56, 2391-2392.	1.6	1
29	Other protein blood groups. , 2016, , 185-192.		1
30	International society of blood transfusion working party on red cell immunogenetics and terminology: report of the Seoul and London meetings. ISBT Science Series, 2016, 11, 118-122.	1.1	56
31	An ageâ€dependent <scp>ABO</scp> discrepancy between mother and baby reveals a novel <i>><scp>A</scp><^{weak}</i> allele. Transfusion, 2015, 55, 422-426.	1.6	9
32	RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nature Medicine, 2015, 21, 314-317.	30.7	166
33	Shiga Toxin–Induced Complement-Mediated Hemolysis and Release of Complement-Coated Red Blood Cell–Derived Microvesicles in Hemolytic Uremic Syndrome. Journal of Immunology, 2015, 194, 2309-2318.	0.8	65
34	Identification of the Molecular and Genetic Basis of PX2, a Glycosphingolipid Blood Group Antigen Lacking on Globoside-deficient Erythrocytes. Journal of Biological Chemistry, 2015, 290, 18505-18518.	3.4	20
35	Five new blood group systems – what next?. ISBT Science Series, 2014, 9, 136-140.	1.1	4
36	International Society of Blood Transfusion Working Party on red cell immunogenetics and blood group terminology: Cancun report (2012). Vox Sanguinis, 2014, 107, 90-96.	1.5	69

#	Article	IF	Citations
37	Forssman expression on human erythrocytes: biochemical and genetic evidence of a new histo-blood group system. Blood, 2013, 121, 1459-1468.	1.4	60
38	Nomenclature for red blood cell blood group alleles. Transfusion, 2013, 53, 2844-2846.	1.6	4
39	Homozygosity for a null allele of SMIM1 defines the Vel-negative blood group phenotype. Nature Genetics, 2013, 45, 537-541.	21.4	75
40	International Society of Blood Transfusion Working Party on red cell immunogenetics and blood group terminology: Berlin report. Vox Sanguinis, 2011, 101, 77-82.	1.5	75
41	Characterization of Jk(a+ ^{weak}): a new blood group phenotype associated with an altered <i>JK*01</i> allele. Transfusion, 2011, 51, 380-392.	1.6	28
42	Don't ask, don't tell: the ART of silence can jeopardize assisted pregnancies. Transfusion, 2010, 50, 2070-2072.	1.6	5
43	<i>KEL*02</i> alleles with alterations in and around exon 8 in individuals with apparent KEL:1,â^2 phenotypes. Vox Sanguinis, 2010, 99, 150-157.	1.5	5
44	The Cromer blood group system: a review. Immunohematology, 2010, 26, 109-117.	0.2	23
45	The Cromer blood group system: a review. Immunohematology, 2010, 26, 109-18.	0.2	12
46	The Bloodgen Project of the European Union, 2003–2009. Transfusion Medicine and Hemotherapy, 2009, 36, 162-167.	1.6	48
47	International Society of Blood Transfusion Committee on Terminology for Red Blood Cell Surface Antigens: Macao report. Vox Sanguinis, 2009, 96, 153-156.	1.5	65
48	Alloantiâ€c in a câ€positive, JALâ€positive patient. Vox Sanguinis, 2009, 96, 240-243.	1.5	13
49	Murine monoclonal antiâ€s and other antiâ€glycophorin B antibodies resulting from immunizations with a GPB.s peptide. Transfusion, 2009, 49, 485-494.	1.6	13
50	Will Genotyping Replace Serology in Future Routine Blood Grouping? & Dinion 4. Transfusion Medicine and Hemotherapy, 2009, 36, 232-233.	1.6	8
51	4.1R-deficient human red blood cells have altered phosphatidylserine exposure pathways and are deficient in CD44 and CD47 glycoproteins. Haematologica, 2009, 94, 1354-1361.	3.5	21
52	The ABO blood group system revisited: a review and update. Immunohematology, 2009, 25, 48-59.	0.2	221
53	The ABO blood group system revisited: a review and update. Immunohematology, 2009, 25, 48-59.	0.2	156
54	Erythroid urea transporter deficiency due to novel <i>JK</i> ^{<i>null</i>} alleles. Transfusion, 2008, 48, 365-372.	1.6	26

#	Article	IF	Citations
55	<i>ABO</i> transcript levels in peripheral blood and erythropoietic culture show different alleleâ€related patterns independent of the CBF/NFâ€Y enhancer motif and multiple novel alleleâ€specific variations in the 5′―and 3′―noncoding regions. Transfusion, 2008, 48, 493-504.	1.6	18
56	New technologies to replace current blood typing reagents. Current Opinion in Hematology, 2007, 14, 677-681.	2.5	8
57	International Society of Blood Transfusion Committee on Terminology for Red Cell Surface Antigens: Cape Town report. Vox Sanguinis, 2007, 92, 250-253.	1.5	56
58	The BloodGen project: toward mass-scale comprehensive genotyping of blood donors in the European Union and beyond. Transfusion, 2007, 47, 40S-46S.	1.6	80
59	Application of DNA analysis to the quality assurance of reagent red blood cells. Transfusion, 2007, 47, 73S-78S.	1.6	14
60	Rabbit red blood cell stroma bind immunoglobulin M antibodies regardless of blood group specificity. Transfusion, 2006, 46, 1260-1261.	1.6	4
61	Identification of six new alleles at the FUT1 and FUT2 loci in ethnically diverse individuals with Bombay and Para-Bombay phenotypes. Transfusion, 2006, 46, 2149-2155.	1.6	41
62	Blood group genotype analysis for the quality improvement of reagent test red blood cells. Vox Sanguinis, 2005, 88, 265-270.	1.5	24
63	Genetic basis of the KOphenotype in the Swedish population. Transfusion, 2005, 45, 545-549.	1.6	16
64	Genetic basis of blood group diversity. British Journal of Haematology, 2004, 126, 759-771.	2.5	48
65	Evidence that Hy- RBCs express weak Joa antigen. Transfusion, 2004, 44, 170-172.	1.6	7
66	A new hybrid RHCE gene (CeNR) is responsible for expression of a novel antigen. Transfusion, 2004, 44, 1047-1051.	1.6	13
67	SERF: a new antigen in the Cromer blood group system. Transfusion Medicine, 2004, 14, 313-318.	1.1	18
68	Review: the function of blood group–specific RBC membrane components. Immunohematology, 2004, 20, 206-216.	0.2	5
69	Cefotetan-induced immune hemolytic anemia following prophylaxis for cesarean delivery. Immunohematology, 2004, 20, 63-66.	0.2	3
70	Review: the function of blood group-specific RBC membrane components. Immunohematology, 2004, 20, 206-16.	0.2	4
71	Mutations in GYPB exon 5 drive the S-s-U+var phenotype in persons of African descent: implications for transfusion. Transfusion, 2003, 43, 1738-1747.	1.6	56
72	GUTI: a new antigen in the Cromer blood group system. Transfusion, 2003, 43, 340-344.	1.6	24

#	Article	IF	CITATIONS
73	DAK, a new low-incidence antigen in the Rh blood group system. Transfusion, 2003, 43, 1394-1397.	1.6	19
74	Plasmodium falciparum Is Able To InvadeErythrocytes through a Trypsin-Resistant Pathway Independent ofGlycophorinB. Infection and Immunity, 2003, 71, 6742-6746.	2.2	36
75	Human Blood Groups. Journal of Infusion Nursing, 2003, 26, 367-372.	2.3	11
76	Two new molecular bases for the Dombrock null phenotype. British Journal of Haematology, 2002, 117, 765-767.	2.5	23
77	The low-incidence MNS antigens Mv, sD, and Mit arise from single amino acid substitutions on GPB. Transfusion, 2001, 41, 269-275.	1.6	19
78	The first example of a paraben-dependent antibody to an Rh protein. Transfusion, 2001, 41, 371-374.	1.6	7
79	Molecular basis of the Dombrock null phenotype. Transfusion, 2001, 41, 1405-1407.	1.6	27
80	Molecular basis of Cromer blood group antigens. Transfusion, 2000, 40, 208-213.	1.6	34
81	Molecular mechanisms that lead to reduced expression of Duffy antigens. Transfusion, 2000, 40, 310-320.	1.6	76
82	Identification of a novel hybrid glycophorin gene encoding GP.Hop. Transfusion, 2000, 40, 560-565.	1.6	26
83	First Example of Hemolytic Disease of the Newborn Caused by Anti-Or and Confirmation of the Molecular Basis of Or. Vox Sanguinis, 2000, 79, 180-182.	1.5	10
84	The MNS Blood Group Antigens, Vr (MNS12) and Mt ^a (MNS14), Each Arise from an Amino Acid Substitution on Glycophorin A. Vox Sanguinis, 2000, 78, 52-56.	1.5	14
85	First Example of Hemolytic Disease of the Newborn Caused by Anti-Or and Confirmation of the Molecular Basis of Or. Vox Sanguinis, 2000, 79, 180-182.	1.5	0
86	NOR polyagglutination and Sta glycophorin in one family: relation of NOR polyagglutination to terminal α-galactose residues and abnormal glycolipids. Transfusion, 1999, 39, 32-38.	1.6	30
87	Variation in Lan expression. Transfusion, 1999, 39, 109-110.	1.6	10
88	Rh Haplotypes That Make e But Not hrB Usually Make VS. Vox Sanguinis, 1997, 72, 41-44.	1.5	22
89	Practical method for determination of the U status of S–s– erythrocytes. Immunohematology, 1997, 13, 111-114.	0.2	6
90	Practical method for determination of the U status of S-s- erythrocytes. Immunohematology, 1997, 13, 111-4.	0.2	4

#	Article	IF	CITATIONS
91	Characterization of antibodies produced by S-s- individuals. Transfusion, 1996, 36, 512-516.	1.6	26
92	Expression and quantitative variation of the low-incidence blood group antigen He on some S-s-red cells. Transfusion, 1996, 36, 719-724.	1.6	26
93	Misidentification of anti-Vel due to inappropriate use of prewarming and adsorption techniques. Immunohematology, 1994, 10, 83-6.	0.2	10
94	Red cell alterations associated with virucidal methylene blue phototreatment. Transfusion, 1993, 33, 30-36.	1.6	52