List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8588874/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Candida albicans Enhances the Progression of Oral Squamous Cell Carcinoma <i>In Vitro</i> and <i>In Vivo</i> . MBio, 2022, 13, e0314421.	4.1	39
2	The effect of antifungal resistance development on the virulence of <i>Candida</i> species. FEMS Yeast Research, 2022, 22, .	2.3	13
3	Transcriptome and proteome profiling reveals complex adaptations of Candida parapsilosis cells assimilating hydroxyaromatic carbon sources. PLoS Genetics, 2022, 18, e1009815.	3.5	1
4	Lactobacillus acidophilus, L. plantarum, L. rhamnosus, and L. reuteri Cell-Free Supernatants Inhibit Candida parapsilosis Pathogenic Potential upon Infection of Vaginal Epithelial Cells Monolayer and in a Transwell Coculture System <i>In Vitro</i> . Microbiology Spectrum, 2022, 10, e0269621.	3.0	18
5	Characterization and functional analysis of zinc trafficking in the human fungal pathogen <i>Candida parapsilosis</i> . Open Biology, 2022, 12, .	3.6	4
6	Deciphering of <i>Candida parapsilosis</i> induced immune response in <i>Drosophila melanogaster</i> . Virulence, 2021, 12, 2571-2582.	4.4	2
7	Enhancing the chemical transformation of <i>Candida parapsilosis</i> . Virulence, 2021, 12, 937-950.	4.4	7
8	Complex and Controversial Roles of Eicosanoids in Fungal Pathogenesis. Journal of Fungi (Basel,) Tj ETQqO 0 0 rgf	3T ₃ /Overlo	ck 10 Tf 50
9	Symbiotic NCR Peptide Fragments Affect the Viability, Morphology and Biofilm Formation of Candida Species. International Journal of Molecular Sciences, 2021, 22, 3666.	4.1	6
10	OCT1 – a yeast mitochondrial thiolase involved in the 3-oxoadipate pathway. FEMS Yeast Research, 2021, 21, .	2.3	2
11	Oral Epithelial Cells Distinguish between <i>Candida </i> Species with High or Low Pathogenic	3.8	8

11	Oral Epithelial Cells Distinguish between <i>Candida</i> Species with High or Low Pathogenic Potential through MicroRNA Regulation. MSystems, 2021, 6, .	3.8	8
12	Signaling through Syk or CARD9 Mediates Species-Specific Anti- <i>Candida</i> Protection in Bone Marrow Chimeric Mice. MBio, 2021, 12, e0160821.	4.1	5
13	The fungivorous amoeba <i>Protostelium aurantium</i> targets redox homeostasis and cell wall integrity during intracellular killing of <i>Candida parapsilosis</i> . Cellular Microbiology, 2021, 23, e13389.	2.1	6
14	Virulence Factors and in-Host Selection on Phenotypes in Infectious Probiotic Yeast Isolates (Saccharomyces †boulardii'). Journal of Fungi (Basel, Switzerland), 2021, 7, 746.	3.5	6
15	Epidemiological Attributes of Candida Species in Tropical Regions. Current Tropical Medicine Reports, 2021, 8, 59-68.	3.7	4
16	A Candida parapsilosis Overexpression Collection Reveals Genes Required for Pathogenesis. Journal of Fungi (Basel, Switzerland), 2021, 7, 97.	3.5	11
17	Kynurenic Acid and Its Analogue SZR-72 Ameliorate the Severity of Experimental Acute Necrotizing Pancreatitis. Frontiers in Immunology, 2021, 12, 702764.	4.8	2

Cover Image: The fungivorous amoeba <i>Protostelium aurantium</i> targets redox homeostasis and cell wall integrity during intracellular killing of <i>Candida parapsilosis</i> (Cellular Microbiology) Tj ETQq0 0 0 rgBP/Dverloclo 10 Tf 50 S

#	Article	IF	CITATIONS
19	The effect of acquired triazole resistance on abiotic stress tolerance and virulence in Candida auris micro evolved strains. Access Microbiology, 2021, 3, .	0.5	Ο
20	Investigation of the zinc uptake system of the human fungal pathogen Candida parapsilosis. Access Microbiology, 2021, 3, .	0.5	1
21	Phenotypic Variability in a Coinfection With Three Independent Candida parapsilosis Lineages. Frontiers in Microbiology, 2020, 11, 1994.	3.5	10
22	Triazole Evolution of Candida parapsilosis Results in Cross-Resistance to Other Antifungal Drugs, Influences Stress Responses, and Alters Virulence in an Antifungal Drug-Dependent Manner. MSphere, 2020, 5, .	2.9	23
23	Iron Metabolism, Pseudohypha Production, and Biofilm Formation through a Multicopper Oxidase in the Human-Pathogenic Fungus Candida parapsilosis. MSphere, 2020, 5, .	2.9	17
24	Multicopper Oxidases in Saccharomyces cerevisiae and Human Pathogenic Fungi. Journal of Fungi (Basel, Switzerland), 2020, 6, 56.	3.5	3
25	Identification and Characterization of a Neutral Locus for Knock-in Purposes in C. parapsilosis. Frontiers in Microbiology, 2020, 11, 1194.	3.5	7
26	Mechanisms of Pathogenic Candida Species to Evade the Host Complement Attack. Frontiers in Cellular and Infection Microbiology, 2020, 10, 94.	3.9	61
27	Trk1-mediated potassium uptake contributes to cell-surface properties and virulence of Candida glabrata. Scientific Reports, 2019, 9, 7529.	3.3	11
28	Multi-omics Signature of <i>Candida auris</i> , an Emerging and Multidrug-Resistant Pathogen. MSystems, 2019, 4, .	3.8	65
29	Candida parapsilosis: from Genes to the Bedside. Clinical Microbiology Reviews, 2019, 32, .	13.6	182
30	Functional Characterization of Secreted Aspartyl Proteases in Candida parapsilosis. MSphere, 2019, 4, .	2.9	29
31	Role of Protein Mannosylation in the Candida tropicalis-Host Interaction. Frontiers in Microbiology, 2019, 10, 2743.	3.5	10
32	Eicosanoid production by <i>Candida parapsilosis</i> and other pathogenic yeasts. Virulence, 2019, 10, 970-975.	4.4	8
33	Investigation of Candida parapsilosis virulence regulatory factors during host-pathogen interaction. Scientific Reports, 2018, 8, 1346.	3.3	21
34	Candida psilosis Complex. , 2018, , .		1
35	Echinocandin-Induced Microevolution of Candida parapsilosis Influences Virulence and Abiotic Stress Tolerance. MSphere, 2018, 3, .	2.9	29
36	Myeloid-Specific Deletion of Mcl-1 Yields Severely Neutropenic Mice That Survive and Breed in Homozygous Form. Journal of Immunology, 2018, 201, 3793-3803.	0.8	35

#	Article	IF	CITATIONS
37	CORTOC04210 is required for Candida orthopsilosis adhesion to human buccal cells. Fungal Genetics and Biology, 2018, 120, 19-29.	2.1	24
38	Eicosanoid biosynthesis influences the virulence of <i>Candida parapsilosis</i> . Virulence, 2018, 9, 1019-1035.	4.4	18
39	Candida psilosis Complex. , 2018, , 526-543.		Ο
40	Specific pathways mediating inflammasome activation by Candida parapsilosis. Scientific Reports, 2017, 7, 43129.	3.3	23
41	Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases. Microbiology Spectrum, 2017, 5, .	3.0	31
42	Eukaryotic transporters for hydroxyderivatives of benzoic acid. Scientific Reports, 2017, 7, 8998.	3.3	8
43	Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases. , 2017, , 35-56.		10
44	Investigation of OCH1 in the Virulence of Candida parapsilosis Using a New Neonatal Mouse Model. Frontiers in Microbiology, 2017, 8, 1197.	3.5	8
45	Candida parapsilosis Secreted Lipase as an Important Virulence Factor. Current Protein and Peptide Science, 2017, 18, 1043-1049.	1.4	23
46	Role of Protein Glycosylation in Candida parapsilosis Cell Wall Integrity and Host Interaction. Frontiers in Microbiology, 2016, 7, 306.	3.5	57
47	Editorial: Recent Advances in the Study of the Host-Fungus Interaction. Frontiers in Microbiology, 2016, 7, 1694.	3.5	1
48	Disruption of Protein Mannosylation Affects Candida guilliermondii Cell Wall, Immune Sensing, and Virulence. Frontiers in Microbiology, 2016, 7, 1951.	3.5	40
49	Analysis of oral yeast microflora in patients with oral squamous cell carcinoma. SpringerPlus, 2016, 5, 1257.	1.2	24
50	The cytoprotective effect of biglycan core protein involves Toll-like receptor 4 signaling in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2016, 99, 138-150.	1.9	23
51	Adhesins in <i>Candida parapsilosis </i> : Understudied players in virulence. Virulence, 2016, 7, 65-67.	4.4	8
52	Different Candida parapsilosis clinical isolates and lipase deficient strain trigger an altered cellular immune response. Frontiers in Microbiology, 2015, 6, 1102.	3.5	13
53	<i>Candida parapsilosis</i> produces prostaglandins from exogenous arachidonic acid and <i>OLE2</i> is not required for their synthesis. Virulence, 2015, 6, 85-92.	4.4	22
54	Members of the Candida parapsilosis Complex and Candida albicans are Differentially Recognized by Human Peripheral Blood Mononuclear Cells. Frontiers in Microbiology, 2015, 6, 1527.	3.5	46

#	Article	IF	CITATIONS
55	Further characterization of the role of the mitochondrial high-mobility group box protein in the intracellular redox environment of Aspergillus nidulans. Microbiology (United Kingdom), 2015, 161, 1897-1908.	1.8	7
56	The Genomic Aftermath of Hybridization in the Opportunistic Pathogen Candida metapsilosis. PLoS Genetics, 2015, 11, e1005626.	3.5	139
57	Comparative Phenotypic Analysis of the Major Fungal Pathogens Candida parapsilosis and Candida albicans. PLoS Pathogens, 2014, 10, e1004365.	4.7	108
58	Kinetic studies of Candida parapsilosis phagocytosis by macrophages and detection of intracellular survival mechanisms. Frontiers in Microbiology, 2014, 5, 633.	3.5	23
59	SecretedCandida parapsilosislipase modulates the immune response of primary human macrophages. Virulence, 2014, 5, 555-562.	4.4	31
60	Genome Comparison of Candida orthopsilosis Clinical Strains Reveals the Existence of Hybrids between Two Distinct Subspecies. Genome Biology and Evolution, 2014, 6, 1069-1078.	2.5	138
61	Transcriptome profile of the murine macrophage cell response to Candida parapsilosis. Fungal Genetics and Biology, 2014, 65, 48-56.	2.1	12
62	Genetic determinants of virulence – Candida parapsilosis. Revista Iberoamericana De Micologia, 2014, 31, 16-21.	0.9	13
63	Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nature Communications, 2014, 5, 4471.	12.8	133
64	A dually located multiâ€ <scp>HMG</scp> â€box protein of <scp><i>A</i></scp> <i>spergillus nidulans</i> has a crucial role in conidial and ascospore germination. Molecular Microbiology, 2014, 94, 383-402.	2.5	20
65	Induction of human defensins by intestinal Caco-2 cells after interactions with opportunistic Candida species. Microbes and Infection, 2014, 16, 80-85.	1.9	25
66	The Role of Pancreatic Ductal Secretion in Protection Against Acute Pancreatitis in Mice*. Critical Care Medicine, 2014, 42, e177-e188.	0.9	42
67	Differential Sensitivity of the Species of Candida parapsilosis Sensu Lato Complex Against Statins. Mycopathologia, 2013, 176, 211-217.	3.1	4
68	The <scp>APSES</scp> transcription factor <scp>Efg</scp> 1 is a global regulator that controls morphogenesis and biofilm formation in <i><scp>C</scp>andida parapsilosis</i> . Molecular Microbiology, 2013, 90, 36-53.	2.5	46
69	Candida albicans and Candida parapsilosis Induce Different T-Cell Responses in Human Peripheral Blood Mononuclear Cells. Journal of Infectious Diseases, 2013, 208, 690-698.	4.0	47
70	Unexpected Genomic Variability in Clinical and Environmental Strains of the Pathogenic Yeast Candida parapsilosis. Genome Biology and Evolution, 2013, 5, 2382-2392.	2.5	62
71	Candida parapsilosis Is a Significant Neonatal Pathogen. Pediatric Infectious Disease Journal, 2013, 32, e206-e216.	2.0	175
72	Characterization of Virulence Properties in the C. parapsilosis Sensu Lato Species. PLoS ONE, 2013, 8, e68704.	2.5	66

#	Article	IF	CITATIONS
73	The Identification of Gene Duplication and the Role of Secreted Aspartyl Proteinase 1 in Candida parapsilosis Virulence. Journal of Infectious Diseases, 2012, 205, 923-933.	4.0	47
74	Mitochondrial genome variability within the Candida parapsilosis species complex. Mitochondrion, 2012, 12, 514-519.	3.4	20
75	The secreted lipase FGL1 is sufficient to restore the initial infection step to the apathogenic Fusarium graminearum MAP kinase disruption mutant Δgpmk1. European Journal of Plant Pathology, 2012, 134, 23-37.	1.7	20
76	A Rat Model of Neonatal Candidiasis Demonstrates the Importance of Lipases as Virulence Factors for Candida albicans and Candida parapsilosis. Mycopathologia, 2011, 172, 169-178.	3.1	29
77	In vitro interactions of Candida parapsilosis wild type and lipase deficient mutants with human monocyte derived dendritic cells. BMC Microbiology, 2011, 11, 122.	3.3	23
78	Candida parapsilosis fat storage-inducing transmembrane (FIT) protein 2 regulates lipid droplet formation and impacts virulence. Microbes and Infection, 2011, 13, 663-672.	1.9	24
79	The Stearoyl-Coenzyme A Desaturase 1 Is Essential for Virulence and Membrane Stress in <i>Candida parapsilosis</i> through Unsaturated Fatty Acid Production. Infection and Immunity, 2011, 79, 136-145.	2.2	29
80	Secreted lipases supply fatty acids for yeast growth in the absence of de novo fatty acid synthesis. Virulence, 2011, 2, 538-541.	4.4	7
81	Methamphetamine Enhances Histoplasmosis by Immunosuppression of the Host. Journal of Infectious Diseases, 2009, 200, 131-141.	4.0	78
82	Biology and genetics of the pathogenic yeast Candida parapsilosis. Current Genetics, 2009, 55, 497-509.	1.7	53
83	Acetylsalicylic acid (aspirin) reduces damage to reconstituted human tissues infected with Candida species by inhibiting extracellular fungal lipases. Microbes and Infection, 2009, 11, 1131-1139.	1.9	21
84	Histoplasma capsulatum at the host–pathogen interface. Microbes and Infection, 2008, 10, 973-977.	1.9	35
85	<i>Candida parapsilosis</i> , an Emerging Fungal Pathogen. Clinical Microbiology Reviews, 2008, 21, 606-625.	13.6	698
86	A Monoclonal Antibody to <i>Histoplasma capsulatum</i> Alters the Intracellular Fate of the Fungus in Murine Macrophages. Eukaryotic Cell, 2008, 7, 1109-1117.	3.4	34
87	Methamphetamine Inhibits Antigen Processing, Presentation, and Phagocytosis. PLoS Pathogens, 2008, 4, e28.	4.7	122
88	The PD-1/PD-L costimulatory pathway critically affects host resistance to the pathogenic fungus <i>Histoplasma capsulatum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2658-2663.	7.1	107
89	Voriconazole Inhibits Melanization in <i>Cryptococcus neoformans</i> . Antimicrobial Agents and Chemotherapy, 2007, 51, 4396-4400.	3.2	18
90	Lipase 8 Affects the Pathogenesis of <i>Candida albicans</i> . Infection and Immunity, 2007, 75, 4710-4718.	2.2	75

ATTILA GACSER

#	Article	IF	CITATIONS
91	Virulence of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis in reconstituted human tissue models. Fungal Genetics and Biology, 2007, 44, 1336-1341.	2.1	115
92	Enhanced mycotoxin production of a lipase-deficient Fusarium graminearum mutant correlates to toxin-related gene expression. European Journal of Plant Pathology, 2007, 117, 1-12.	1.7	42
93	Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. Journal of Clinical Investigation, 2007, 117, 3049-3058.	8.2	124
94	Direct transformation of a clinical isolate ofCandida parapsilosisusing a dominant selection marker. FEMS Microbiology Letters, 2005, 245, 117-121.	1.8	31
95	Expression analysis of the lipase gene family during experimental infections and in patient samples. FEMS Yeast Research, 2004, 4, 401-408.	2.3	89
96	Mitochondrial DNA organisation of the mtDNA type 2b ofAspergillus tubingensiscompared to theAspergillus nigermtDNA type 1a. FEMS Microbiology Letters, 2004, 241, 119-126.	1.8	10
97	Interpretation of intraspecific variability in mtDNAs ofAspergillus nigerstrains and rearrangement of their mtDNAs following mitochondrial transmissions. FEMS Microbiology Letters, 2003, 221, 63-71.	1.8	12
98	Organization of mitochondrial DNA in the basidiomycetous Dioszegia hungarica (Cryptococcus) Tj ETQq0 0 0 rgE	3T /Qverloo 1.8	:k ₂ 10 Tf 50 4

⁹⁹ Intra-strain variability of Cryptococcus neoformans can be detected on Phloxin B medium. Journal of Basic Microbiology, 2002, 42, 111.	3.3	5	
--	-----	---	--

100 Organization of mitochondrial DNA in the basidiomycetousDioszegia hungarica(Cryptococcus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 38

101	Intron Mobility Results in Rearrangement in Mitochondrial DNAs of Heterokaryon Incompatible Aspergillus japonicus Strains after Protoplast Fusion. Fungal Genetics and Biology, 2001, 33, 83-95.	2.1	25
102	Genetic diversity in the red yeast and its phylogenetic relationship to some related basidiomycetous yeasts. FEMS Yeast Research, 2001, 1, 213-220.	2.3	4