
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8588114/publications.pdf Version: 2024-02-01

ΤιλΝΤΙΛΝΙΙ

#	Article	IF	CITATIONS
1	A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Science of the Total Environment, 2018, 636, 52-60.	3.9	406
2	Cardiopulmonary Benefits of Reducing Indoor Particles of Outdoor Origin. Journal of the American College of Cardiology, 2015, 65, 2279-2287.	1.2	214
3	All-cause mortality risk associated with long-term exposure to ambient PM2·5 in China: a cohort study. Lancet Public Health, The, 2018, 3, e470-e477.	4.7	187
4	Projections of seasonal patterns in temperature- related deaths for Manhattan, NewÂYork. Nature Climate Change, 2013, 3, 717-721.	8.1	143
5	A county-level estimate of PM 2.5 related chronic mortality risk in China based on multi-model exposure data. Environment International, 2018, 110, 105-112.	4.8	113
6	Estimating mortality burden attributable to short-term PM2.5 exposure: A national observational study in China. Environment International, 2019, 125, 245-251.	4.8	110
7	Effects of ambient temperature on myocardial infarction: A systematic review and meta-analysis. Environmental Pollution, 2018, 241, 1106-1114.	3.7	98
8	Short- and intermediate-term exposure to NO2 and mortality: A multi-county analysis in China. Environmental Pollution, 2020, 261, 114165.	3.7	94
9	Short-term exposures to PM2.5 and cause-specific mortality of cardiovascular health in China. Environmental Research, 2018, 161, 188-194.	3.7	86
10	National scale spatiotemporal land-use regression model for PM2.5, PM10 and NO2 concentration in China. Atmospheric Environment, 2018, 192, 48-54.	1.9	81
11	Estimation of PM2·5-associated disease burden in China in 2020 and 2030 using population and air quality scenarios: a modelling study. Lancet Planetary Health, The, 2019, 3, e71-e80.	5.1	71
12	The health policy implications of individual adaptive behavior responses to smog pollution in urban China. Environment International, 2017, 106, 144-152.	4.8	66
13	The effect of high temperature on cause-specific mortality: A multi-county analysis in China. Environment International, 2017, 106, 19-26.	4.8	65
14	Estimating the daily PM2.5 concentration in the Beijing-Tianjin-Hebei region using a random forest model with a 0.01°†×†0.01° spatial resolution. Environment International, 2020, 134, 105297.	4.8	65
15	Acute effects of temperature exposure on blood pressure: An hourly level panel study. Environment International, 2019, 124, 493-500.	4.8	60
16	The impact of the 2008 cold spell on mortality in Shanghai, China. International Journal of Biometeorology, 2013, 57, 179-184.	1.3	55
17	Mortality risks from a spectrum of causes associated with wide-ranging exposure to fine particulate matter: A case-crossover study in Beijing, China. Environment International, 2018, 111, 52-59.	4.8	54
18	High-resolution daily AOD estimated to full coverage using the random forest model approach in the Beijing-Tianjin-Hebei region. Atmospheric Environment, 2019, 203, 70-78.	1.9	51

#	Article	IF	CITATIONS
19	Random forest model based fine scale spatiotemporal O3 trends in the Beijing-Tianjin-Hebei region in China, 2010 to 2017. Environmental Pollution, 2021, 276, 116635.	3.7	50
20	PM2.5 and Serum Metabolome and Insulin Resistance, Potential Mediation by the Gut Microbiome: A Population-Based Panel Study of Older Adults in China. Environmental Health Perspectives, 2022, 130, 27007.	2.8	50
21	Short-term effects of multiple ozone metrics on daily mortality in a megacity of China. Environmental Science and Pollution Research, 2015, 22, 8738-8746.	2.7	49
22	Modification Effects of Temperature on the Ozone–Mortality Relationship: A Nationwide Multicounty Study in China. Environmental Science & Technology, 2020, 54, 2859-2868.	4.6	49
23	Heat-related mortality projections for cardiovascular and respiratory disease under the changing climate in Beijing, China. Scientific Reports, 2015, 5, 11441.	1.6	47
24	Calibration of a low-cost PM2.5 monitor using a random forest model. Environment International, 2019, 133, 105161.	4.8	46
25	Health-risk perception and its mediating effect on protective behavioral adaptation to heat waves. Environmental Research, 2019, 172, 27-33.	3.7	46
26	Meta-analysis of the Chinese studies of the association between ambient ozone and mortality. Chemosphere, 2013, 93, 899-905.	4.2	44
27	Long-term projections of temperature-related mortality risks for ischemic stroke, hemorrhagic stroke, and acute ischemic heart disease under changing climate in Beijing, China. Environment International, 2018, 112, 1-9.	4.8	44
28	Fine Particle Constituents and Mortality: A Time-Series Study in Beijing, China. Environmental Science & Technology, 2018, 52, 11378-11386.	4.6	41
29	Associations of daily mortality with short-term exposure to PM2.5 and its constituents in Shanghai, China. Chemosphere, 2019, 233, 879-887.	4.2	40
30	Acute effect of multiple ozone metrics on mortality by season in 34 Chinese counties in 2013–2015. Journal of Internal Medicine, 2018, 283, 481-488.	2.7	39
31	A random forest model to predict heatstroke occurrence for heatwave in China. Science of the Total Environment, 2019, 650, 3048-3053.	3.9	38
32	The Shape of the Concentration–Response Association between Fine Particulate Matter Pollution and Human Mortality in Beijing, China, and Its Implications for Health Impact Assessment. Environmental Health Perspectives, 2019, 127, 67007.	2.8	36
33	Depression and Anxiety Associated with Exposure to Fine Particulate Matter Constituents: A Cross-Sectional Study in North China. Environmental Science & Technology, 2020, 54, 16006-16016.	4.6	36
34	Assessment of health-based economic costs linked to fine particulate (PM2.5) pollution: a case study of haze during January 2013 in Beijing, China. Air Quality, Atmosphere and Health, 2016, 9, 439-445.	1.5	35
35	The relationship between airborne fine particle matter and emergency ambulance dispatches in a southwestern city in Chengdu, China. Environmental Pollution, 2017, 229, 661-667.	3.7	32
36	Heat wave characteristics, mortality and effect modification by temperature zones: a time-series study in 130 counties of China. International Journal of Epidemiology, 2021, 49, 1813-1822.	0.9	31

#	Article	IF	CITATIONS
37	Associations between short-term exposure to PM2.5 and stroke incidence and mortality in China: A case-crossover study and estimation of the burden. Environmental Pollution, 2021, 268, 115743.	3.7	31
38	Risk of Cardiovascular Hospital Admission After Exposure to FineÂParticulate Pollution. Journal of the American College of Cardiology, 2021, 78, 1015-1024.	1.2	29
39	Associations between Personal PM _{2.5} Elemental Constituents and Decline of Kidney Function in Older Individuals: the China BAPE Study. Environmental Science & Technology, 2020, 54, 13167-13174.	4.6	28
40	Fine particulate matter constituents and sub-clinical outcomes of cardiovascular diseases: A multi-center study in China. Science of the Total Environment, 2021, 759, 143555.	3.9	27
41	Acute effects of PM2.5 on lung function parameters in schoolchildren in Nanjing, China: a panel study. Environmental Science and Pollution Research, 2018, 25, 14989-14995.	2.7	26
42	Cumulative health risk assessment of disinfection by-products in drinking water by different disinfection methods in typical regions of China. Science of the Total Environment, 2021, 770, 144662.	3.9	26
43	The relationship between particulate matter and lung function of children: A systematic review and meta-analysis. Environmental Pollution, 2022, 309, 119735.	3.7	25
44	Increased Mortality During the 2010 Heat Wave in Harbin, China. EcoHealth, 2012, 9, 310-314.	0.9	24
45	Long-term exposure to ozone and cardiovascular mortality in a large Chinese cohort. Environment International, 2022, 165, 107280.	4.8	24
46	Effects of ambient particulate matter on fasting blood glucose: A systematic review and meta-analysis. Environmental Pollution, 2020, 258, 113589.	3.7	23
47	Effects of using different exposure data to estimate changes in premature mortality attributable to PM2.5 and O3 in China. Environmental Pollution, 2021, 285, 117242.	3.7	23
48	Personal black carbon exposure and its determinants among elderly adults in urban China. Environment International, 2020, 138, 105607.	4.8	22
49	The exposome in practice: an exploratory panel study of biomarkers of air pollutant exposure in Chinese people aged 60–69 years (China BAPE Study). Environment International, 2021, 157, 106866.	4.8	21
50	The association of ambient PM2.5 with school absence and symptoms in schoolchildren: a panel study. Pediatric Research, 2018, 84, 28-33.	1.1	20
51	Assessment of PM2.5 monitoring using MicroPEM: A validation study in a city with elevated PM2.5 levels. Ecotoxicology and Environmental Safety, 2019, 171, 518-522.	2.9	20
52	Statistical spatial-temporal modeling of ambient ozone exposure for environmental epidemiology studies: A review. Science of the Total Environment, 2020, 701, 134463.	3.9	19
53	The exceptional heatwaves of 2017 and all-cause mortality: An assessment of nationwide health and economic impacts in China. Science of the Total Environment, 2022, 812, 152371.	3.9	19
54	PM2.5-associated risk for cardiovascular hospital admission and related economic burdens in Beijing, China. Science of the Total Environment, 2021, 799, 149445.	3.9	17

#	Article	IF	CITATIONS
55	Heat stroke internet searches can be a new heatwave health warning surveillance indicator. Scientific Reports, 2016, 6, 37294.	1.6	16
56	Environmental Health Indicators for China: Data Resources for Chinese Environmental Public Health Tracking. Environmental Health Perspectives, 2019, 127, 44501.	2.8	16
57	Modeling of residential indoor PM2.5 exposure in 37 counties in China. Environmental Pollution, 2018, 238, 691-697.	3.7	15
58	STRIP2 silencing inhibits vascular smooth muscle cell proliferation and migration via P38–AKT–MMPâ€2 signaling pathway. Journal of Cellular Physiology, 2019, 234, 22463-22476.	2.0	15
59	The relationship between population heat vulnerability and urbanization levels: A county-level modeling study across China. Environment International, 2021, 156, 106742.	4.8	15
60	The January 2013 Beijing "Airpocalypse―and its acute effects on emergency and outpatient visits at a Beijing hospital. Air Quality, Atmosphere and Health, 2018, 11, 301-309.	1.5	14
61	Long-term PM2.5 exposure and survival among cardiovascular disease patients in Beijing, China. Environmental Science and Pollution Research, 2021, 28, 47367-47374.	2.7	13
62	The spatiotemporal trends of PM2.5- and O3-related disease burden coincident with the reduction in air pollution in China between 2005 and 2017. Resources, Conservation and Recycling, 2022, 176, 105918.	5.3	13
63	Health risks and economic losses from cold spells in China. Science of the Total Environment, 2022, 821, 153478.	3.9	13
64	Human Cancer Risk from the Inhalation of Formaldehyde in Different Indoor Environments in Guiyang City, China. Bulletin of Environmental Contamination and Toxicology, 2008, 81, 200-204.	1.3	12
65	Urocortin participates in LPS-induced apoptosis of THP-1 macrophages via S1P-cPLA2 signaling pathway. European Journal of Pharmacology, 2020, 887, 173559.	1.7	12
66	Impact of Heavy PM _{2.5} Pollution Events on Mortality in 250 Chinese Counties. Environmental Science & Technology, 2022, 56, 8299-8307.	4.6	11
67	Associations of residential greenness with peripheral and central obesity in China. Science of the Total Environment, 2021, 791, 148084.	3.9	10
68	Full-coverage 1 km daily ambient PM _{2.5} and O ₃ concentrations of China in 2005–2017 based on a multi-variable random forest model. Earth System Science Data, 2022, 14, 943-954.	3.7	10
69	Air pollution, residential greenness, and metabolic dysfunction biomarkers: analyses in the Chinese Longitudinal Healthy Longevity Survey. BMC Public Health, 2022, 22, 885.	1.2	10
70	Integrating new indicators of predictors that shape the public's perception of local extreme temperature in China. Science of the Total Environment, 2017, 579, 529-536.	3.9	9
71	Design and application of a web-based real-time personal PM2.5 exposure monitoring system. Science of the Total Environment, 2018, 627, 852-859.	3.9	9
72	Cohort profile: Sub-clinical outcomes of polluted air in China (SCOPA-China cohort). Environment International, 2020, 134, 105221.	4.8	9

#	Article	IF	CITATIONS
73	Associations of Fine Particulate Matter Constituents with Metabolic Syndrome and the Mediating Role of Apolipoprotein B: A Multicenter Study in Middle-Aged and Elderly Chinese Adults. Environmental Science & Technology, 2022, 56, 10161-10171.	4.6	9
74	Long-term exposure to ambient fine particulate matter and fasting blood glucose level in a Chinese elderly cohort. Science of the Total Environment, 2020, 717, 137191.	3.9	8
75	NLRP2 inhibits cell proliferation and migration by regulating EMT in lung adenocarcinoma cells. Cell Biology International, 2022, 46, 588-598.	1.4	8
76	A Random Forest Model for Daily PM _{2.5} Personal Exposure Assessment for a Chinese Cohort. Environmental Science and Technology Letters, 2022, 9, 466-472.	3.9	8
77	Assessing heat-related mortality risks in Beijing, China. Biomedical and Environmental Sciences, 2012, 25, 458-64.	0.2	8
78	Linking the Fasting Blood Glucose Level to Short-Term-Exposed Particulate Constituents and Pollution Sources: Results from a Multicenter Cross-Sectional Study in China. Environmental Science & amp; Technology, 2022, 56, 10172-10182.	4.6	8
79	Ambient formaldehyde and mortality: A time series analysis in China. Science Advances, 2022, 8, .	4.7	8
80	Short-term associations between particulate matter air pollution and hospital admissions through the emergency room for urinary system disease in Beijing, China: A time-series study. Environmental Pollution, 2021, 289, 117858.	3.7	7
81	PM2.5 exposure associated with microbiota gut-brain axis: Multi-omics mechanistic implications from the BAPE study. Innovation(China), 2022, 3, 100213.	5.2	7
82	Associations between Source-Specific Fine Particulate Matter and Mortality and Hospital Admissions in Beijing, China. Environmental Science & Technology, 2022, 56, 1174-1182.	4.6	6
83	Associations Between Short-Term Exposure to Fine Particulate Matter and Cardiovascular Disease Hospital Admission After Index Myocardial Infarction. Circulation, 2020, 141, 2110-2112.	1.6	5
84	Epigenetic age stratifies the risk of blood pressure elevation related to short-term PM2.5 exposure in older adults. Environmental Research, 2022, 212, 113507.	3.7	5
85	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1113" altimg="si60.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn><mml:mo>.</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:mrow </mml:msub> 	< 3.0 <td>ath>:</td>	ath>:
86	Associations of Carbonaceous Compounds and Water-Soluble Inorganic Ions in Ambient PM _{2.5} with Renal Function in Older Individuals: The China BAPE Study. Environmental Science & Technology, 2022, 56, 433-439.	4.6	4
87	Sleep disturbance exacerbates the cardiac conduction abnormalities induced by persistent heavy ambient fine particulate matter pollution: A multi-center cross-sectional study. Science of the Total Environment, 2022, 838, 156472.	3.9	4
88	Investigating factors causing difference of indoor exposure to outdoor PM2.5-bounded elemental carbon during different seasons and haze/non-haze days using a Monte Carlo framework. Atmospheric Environment, 2019, 200, 61-68.	1.9	1
89	Short-term Exposure to Fine Particles and Risk of Cause-Specific Mortality - China, 2013-2018. China CDC Weekly, 2019, 1, 8-12.	1.0	1

90 Future Temperature-Related Mortality Risk Under Climate Change Scenarios. , 2019, , 117-130.

0

#	Article	IF	CITATIONS
91	A Random Forest Model for PM2.5 Personal Exposure Assessment for a Chinese Cohort. ISEE Conference Abstracts, 2021, 2021, .	0.0	Ο
92	Reply. Journal of the American College of Cardiology, 2022, 79, e133.	1.2	0