Yanlian Lei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8587898/publications.pdf

Version: 2024-02-01

414414 516710 1,131 48 16 32 h-index citations g-index papers 48 48 48 1708 docs citations all docs times ranked citing authors

#	Article	IF	Citations
1	Graphene Quantum-Dot-Doped Polypyrrole Counter Electrode for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Solar Cells.	8.0	162
2	Near-infrared and visible light dual-mode organic photodetectors. Science Advances, 2020, 6, eaaw8065.	10.3	156
3	Enhancing Crystalline Structural Orders of Polymer Semiconductors for Efficient Charge Transport via Polymerâ€Matrixâ€Mediated Molecular Selfâ€Assembly. Advanced Materials, 2016, 28, 6687-6694.	21.0	86
4	Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors. Scientific Reports, 2016, 6, 24476.	3.3	82
5	Highly sensitive near infrared organic phototransistors based on conjugated polymer nanowire networks. Organic Electronics, 2017, 48, 12-18.	2.6	55
6	Driving current and temperature dependent magnetic-field modulated electroluminescence in Alq3-based organic light emitting diode. Organic Electronics, 2009, 10, 889-894.	2.6	53
7	Engineering gate dielectric surface properties for enhanced polymer field-effect transistor performance. Journal of Materials Chemistry C, 2015, 3, 12267-12272.	5 . 5	50
8	Ultralarge Magnetoâ€Electroluminescence in Exciplexâ€Based Devices Driven by Fieldâ€Induced Reverse Intersystem Crossing. Advanced Optical Materials, 2016, 4, 694-699.	7.3	31
9	Regioregular and Random Difluorobenzothiadiazole Electron Donor–Acceptor Polymer Semiconductors for Thin-Film Transistors and Polymer Solar Cells. Macromolecules, 2016, 49, 2541-2548.	4.8	30
10	High-Efficiency Phosphorescent Hybrid Organic–Inorganic Light-Emitting Diodes Using a Solution-Processed Small-Molecule Emissive Layer. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20769-20778.	8.0	29
11	Studying singlet fission and triplet fusion by magneto-electroluminescence method in singlet–triplet energy-resonant organic light-emitting diodes. Organic Electronics, 2014, 15, 169-174.	2.6	28
12	Large magneto-conductance and magneto-electroluminescence in exciplex-based organic light-emitting diodes at room temperature. Applied Physics Letters, 2015, 107, .	3.3	24
13	Hydrocarbonsâ€Driven Crystallization of Polymer Semiconductors for Lowâ€Temperature Fabrication of Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1706372.	14.9	23
14	Magnetoconductance of polymer–fullerene bulk heterojunction solar cells. Organic Electronics, 2009, 10, 1288-1292.	2.6	21
15	Thermally activated singlet exciton fission observed in rubrene doped organic films. Organic Electronics, 2014, 15, 577-581.	2.6	21
16	Composite Hole Transport Layer Consisting of High-Mobility Polymer and Small Molecule With Deep-Lying HOMO Level for Efficient Quantum Dot Light-Emitting Diodes. IEEE Electron Device Letters, 2020, 41, 80-83.	3.9	19
17	Broadband phototransistors realised by incorporating a bi-layer perovskite/NIR light absorbing polymer channel. Journal of Materials Chemistry C, 2019, 7, 4808-4816.	5.5	18
18	A readily-accessible, random perylene diimide copolymer acceptor for all-polymer solar cells. Dyes and Pigments, 2017, 146, 20-26.	3.7	15

#	Article	IF	CITATIONS
19	Realization of triplet–triplet annihilation in planar heterojunction exciplex-based organic light-emitting diodes. Organic Electronics, 2016, 28, 94-99.	2.6	14
20	Magnetoconductance response due to the triplet exciton–charge interaction in organic light-emitting diodes. Organic Electronics, 2013, 14, 2505-2509.	2.6	13
21	Competition between singlet exciton fission, radiation, and dissociation measured in rubrene-doped amorphous films. Synthetic Metals, 2015, 207, 13-17.	3.9	13
22	Highly efficient and bright red quantum dot light-emitting diodes with balanced charge injection. Organic Electronics, 2020, 81, 105683.	2.6	13
23	Polymer based on benzothiadiazole-bridged bis-isoindigo for organic field-effect transistor applications. Dyes and Pigments, 2016, 125, 407-413.	3.7	12
24	Synthesis and characterization of three thienopyridazine-based copolymers and their application in OFET. Tetrahedron Letters, 2016, 57, 1523-1527.	1.4	12
25	High-performance near-infrared organic phototransistors based on diketopyrrolopyrrole conjugated polymers with partial removal of long branched alkyl side chains. Journal of Materials Chemistry C, 2020, 8, 16915-16922.	5. 5	12
26	Dithienobenzochalcogenodiazole-based electron donor–acceptor polymers for organic electronics. Dyes and Pigments, 2016, 129, 90-99.	3.7	11
27	Large Performance Enhancement in All-Solution-Processed, Full-Color, Inverted Quantum-Dot Light-Emitting Diodes Using Graphene Oxide Doped Hole Injection Layer. Journal of Physical Chemistry C, 2020, 124, 11617-11624.	3.1	11
28	Degradation of organic solar cells studied by displacement current. Journal Physics D: Applied Physics, 2009, 42, 145112.	2.8	10
29	Photoinduced magnetoconductance response of N,N′-bis(phenyl)benzidine-based diodes: Sign inversion by controlling carrier extraction. Organic Electronics, 2012, 13, 2003-2007.	2.6	10
30	Negative magnetoconductance effects in amorphous copper phthalocyanine thin film: trap-assisted bipolaron formation. Journal of Materials Chemistry C, 2015, 3, 12056-12060.	5.5	10
31	Temperature-dependent recombination dynamics and electroluminescence characteristics of colloidal CdSe/ZnS core/shell quantum dots. Applied Physics Letters, 2021, 119, .	3.3	10
32	Photocurrent generation through electron–exciton interaction at the organic semiconductor donor/acceptor interface. Physical Chemistry Chemical Physics, 2013, 15, 16891.	2.8	9
33	Partially removing long branched alkyl side chains of regioregular conjugated backbone based diketopyrrolopyrrole polymer for improving field-effect mobility. Journal of Materials Chemistry C, 2018, 6, 13325-13330.	5.5	9
34	Large contribution of triplet excitons to electro-fluorescence in small molecular organic light-emitting diodes. Organic Electronics, 2011, 12, 1512-1517.	2.6	8
35	Synthesis, field-effect and photovoltaic properties of random difluorobenzothiadiazole-isoindigo electron donor-acceptor polymers. Dyes and Pigments, 2016, 134, 251-257.	3.7	8
36	Modulating the competition between dissociation and spin mixing in electron–hole pairs: An investigation of ultra-small field induced magnetoconductance responses in blended devices. Organic Electronics, 2013, 14, 2875-2879.	2.6	7

#	Article	IF	Citations
37	In situ investigation of energy transfer in hybrid organic/colloidal quantum dot light-emitting diodes via magneto-electroluminescence. Physical Chemistry Chemical Physics, 2016, 18, 22373-22378.	2.8	6
38	Synthesis and characterization of two fluorenone-based conjugated polymers and their application in solar cells and thin film transistors. Tetrahedron Letters, 2016, 57, 1430-1434.	1.4	6
39	Tuning magneto-electroluminescence in organic light emitting diodes by controlling the competition between singlet fission and triplet fusion. Synthetic Metals, 2014, 198, 6-9.	3.9	4
40	Traps as interaction sites for hyperfine mixing: The origin of magnetoconductance in organic light-emitting diodes. Organic Electronics, 2016, 39, 318-322.	2.6	4
41	Improved electrical ideality and photoresponse in near-infrared phototransistors realized by bulk heterojunction channels. IScience, 2022, 25, 103711.	4.1	4
42	Synthesis and properties of benzo[c]-, pyrrolo[3,4-c]-, and thieno[3,4-c]-pyrrole-4,6-dione copolymers. New Journal of Chemistry, 2015, 39, 2642-2650.	2.8	3
43	Influence of DCM dye doping on the magnetic field dependent electroluminescence in organic light emitting diodes. Science China: Physics, Mechanics and Astronomy, 2010, 53, 24-29.	5.1	2
44	Magnetic field dependence of photocurrent in thermally evaporated rubrene-based devices. Applied Physics Letters, 2018, 112, 153301.	3.3	2
45	Flurorinated isomeric polymer semiconductors for air-stable unencapsulated transistors. Functional Materials Letters, 2020, 13, 2050019.	1.2	2
46	Efficient Solution-Processed Green InP-Based Quantum Dot Light-Emitting Diodes With a Stepwise Hole Injection Layer. IEEE Electron Device Letters, 2022, 43, 410-413.	3.9	2
47	Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors. , 0, .		1
48	Analytical model for donor like Gaussian traps in organic thin-film transistor. Organic Electronics, 2022, 103, 106464.	2.6	0