Aniket Balapure

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8587841/publications.pdf

Version: 2024-02-01

1040056 1125743 14 179 9 13 citations h-index g-index papers 14 14 14 100 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Water-soluble caffeic acid-dopamine acid-base complex exhibits enhanced bactericidal, antioxidant, and anticancer properties. Food Chemistry, 2022, 374, 131830.	8.2	13
2	Enhanced antibacterial, antioxidant and anticancer activity of caffeic acid by simple acid-base complexation with spermine/spermidine. Natural Product Research, 2022, 36, 6453-6458.	1.8	5
3	Structural, Electronic and Thermoelectric Properties of Bi2Se3 Thin Films Deposited by RF Magnetron Sputtering. Journal of Electronic Materials, 2022, 51, 2500-2509.	2.2	19
4	Fabricating effective heterojunction in metal-organic framework-derived self-cleanable and dark/visible-light dual mode antimicrobial CuO/AgX (XÂ=ÂCl, Br, or I) nanocomposites. Chemical Engineering Journal, 2022, 446, 137363.	12.7	10
5	Anatase versus Triphasic TiO2: Near-identical synthesis and comparative structure-sensitive photocatalytic degradation of methylene blue and 4-chlorophenol. Journal of Colloid and Interface Science, 2021, 581, 205-217.	9.4	18
6	Genotyping simplified: rationally designed antisense oligonucleotide-mediated PCR amplification-free colorimetric sensing of viral RNA in HCV genotypes 1 and 3. Analyst, The, 2021, 146, 4767-4774.	3.5	5
7	Naked-eye colorimetric detection of HCV RNA mediated by a $5\hat{a} \in \mathbb{R}^2$ UTR-targeted antisense oligonucleotide and plasmonic gold nanoparticles. Analyst, The, 2021, 146, 1569-1578.	3. 5	11
8	Lactobacillus amylovorus derived lipase-mediated silver derivatization over poly ($\hat{l}\mu$ -caprolactone) towards antimicrobial coatings. Enzyme and Microbial Technology, 2021, 150, 109888.	3.2	16
9	Sublimable xanthate-mediated solid-state synthesis of highly interspersed g-C3N4/Ag2S nanocomposites exhibiting efficient bactericidal effects both under dark and light conditions. Journal of Environmental Chemical Engineering, 2021, 9, 106065.	6.7	15
10	ZnO core-triggered nitrogen-deficient carbonaceous g-C3N4 shell enhances the visible-light-driven disinfection. Carbon Trends, 2021, 5, 100118.	3.0	11
11	Influence of citrate buffer and flash heating in enhancing the sensitivity of ratiometric genosensing of Hepatitis C virus using plasmonic gold nanoparticles. Micro and Nano Systems Letters, 2021, 9, .	3.7	3
12	Quaternized Polydopamine Coatings for Anchoring Molecularly Dispersed Broad-Spectrum Antimicrobial Silver Salts. ACS Applied Bio Materials, 2021, 4, 8396-8406.	4.6	12
13	Highly Dispersed Nanocomposite of AgBr in g-C ₃ N ₄ Matrix Exhibiting Efficient Antibacterial Effect on Drought-Resistant <i>Pseudomonas putida</i> under Dark and Light Conditions. ACS Applied Materials & Drought-Resistant (1) Provided Naterials & Drought-Resistant (2) Provided Nature Natur	8.0	40
14	Edible Acid–Base Complexes of Caffeic Acid with Histidine and Arginine Exhibit Enhanced Antimicrobial and Antioxidant Characteristics. ACS Food Science & Technology, 0, , .	2.7	1