David E Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8587469/publications.pdf

Version: 2024-02-01

		249298	2	06121
53	5,191	26		51
papers	citations	h-index		g-index
53	53	53		4737
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Biological Connectivity of Seasonally Ponded Wetlands across Spatial and Temporal Scales. Journal of the American Water Resources Association, 2019, 55, 334-353.	1.0	30
2	Adaptive responses of animals to climate change are most likely insufficient. Nature Communications, 2019, 10, 3109.	5.8	285
3	Acute toxicity of copper to the larval stage of three species of ambystomatid salamanders. Ecotoxicology, 2019, 28, 1023-1031.	1.1	7
4	Understanding variation in salamander ionomes: A nutrient balance approach. Freshwater Biology, 2019, 64, 294-305.	1.2	8
5	Delayed effects and complex life cycles: How the larval aquatic environment influences terrestrial performance and survival. Environmental Toxicology and Chemistry, 2018, 37, 2660-2669.	2.2	7
6	Genomic data detect corresponding signatures of population size change on an ecological time scale in two salamander species. Molecular Ecology, 2017, 26, 1060-1074.	2.0	39
7	Integrating copper toxicity and climate change to understand extinction risk to two species of pond-breeding anurans. , 2016 , , n/a - n/a .		O
8	Hepatic and renal trace element concentrations in American alligators (Alligator mississippiensis) following chronic dietary exposure to coal fly ash contaminated prey. Environmental Pollution, 2016, 214, 680-689.	3.7	22
9	Environmental levels of Zn do not protect embryos from Cu toxicity in three species of amphibians. Environmental Pollution, 2016, 214, 161-168.	3.7	4
10	Integrating copper toxicity and climate change to understand extinction risk to two species of pondâ€breeding anurans. Ecological Applications, 2016, 26, 1721-1732.	1.8	6
11	Patterns of amphibian infection prevalence across wetlands on the Savannah River Site, South Carolina, USA. Diseases of Aquatic Organisms, 2016, 121, 1-14.	0.5	11
12	Effects of metal and predator stressors in larval southern toads (Anaxyrus terrestris). Ecotoxicology, 2016, 25, 1278-1286.	1.1	11
13	Efficacy of Labeling Wetlands with Enriched 15N to Determine Amphibian Dispersal. Wetlands, 2015, 35, 349-356.	0.7	2
14	Temporal genetic and demographic monitoring of pond-breeding amphibians in three contrasting population systems. Conservation Genetics, 2015, 16, 1335-1344.	0.8	9
15	Lethal and sublethal measures of chronic copper toxicity in the eastern narrowmouth toad, <i>Gastrophryne carolinensis</i>). Environmental Toxicology and Chemistry, 2015, 34, 575-582.	2.2	16
16	Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, Anaxyrus [Bufo] terrestris. PLoS ONE, 2015, 10, e0125327.	1.1	14
17	Effects of copper exposure on hatching success and early larval survival in marbled salamanders, <i>Ambystoma opacum</i> . Environmental Toxicology and Chemistry, 2014, 33, 1631-1637.	2.2	7
18	Influence of Drought on Salamander Occupancy of Isolated Wetlands on the Southeastern Coastal Plain of the United States. Wetlands, 2013, 33, 345-354.	0.7	58

#	Article	IF	Citations
19	Within- and among-population level differences in response to chronic copper exposure in southern toads, Anaxyrus terrestris. Environmental Pollution, 2013, 177, 135-142.	3.7	28
20	Terrestrial distribution of pond-breeding salamanders around an isolated wetland. Ecology, 2013, 94, 2537-2546.	1.5	22
21	32 species validation of a new Illumina paired-end approach for the development of microsatellites. PLoS ONE, 2013, 8, e81853.	1.1	28
22	Maternal Transfer of Contaminants and Reduced Reproductive Success of Southern Toads (Bufo) Tj ETQq0 0 0 rg 2013, 47, 2846-2853.	gBT /Overl 4.6	ock 10 Tf 50 43
23	Effects of two stressors on amphibian larval development. Ecotoxicology and Environmental Safety, 2012, 79, 283-287.	2.9	8
24	Effects of chronic copper exposure on development and survival in the southern leopard frog (<i>Lithobates [Rana] sphenocephalus</i>). Environmental Toxicology and Chemistry, 2012, 31, 1587-1594.	2.2	33
25	Interactive effects of maternal and environmental exposure to coal combustion wastes decrease survival of larval southern toads (Bufo terrestris). Environmental Pollution, 2012, 164, 211-218.	3.7	31
26	Climate change correlates with rapid delays and advancements in reproductive timing in an amphibian community. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2191-2197.	1.2	151
27	Twelve novel microsatellite markers for the marbled salamander, Ambystoma opacum. Conservation Genetics Resources, 2011, 3, 773-775.	0.4	3
28	Gender Differences in Haemogregarine Infections in American Alligators (Alligator mississippiensis) at Savannah River, South Carolina, USA. Journal of Wildlife Diseases, 2011, 47, 1047-1049.	0.3	3
29	Development and characterization of ten microsatellite loci for the eastern spadefoot toad, Scaphiopus holbrookii. Conservation Genetics Resources, 2010, 2, 143-145.	0.4	1
30	Amphibian lipid levels at metamorphosis correlate to post-metamorphic terrestrial survival. Oecologia, 2007, 153, 521-532.	0.9	128
31	Catastrophic Reproductive Failure, Terrestrial Survival, and Persistence of the Marbled Salamander. Conservation Biology, 2006, 20, 792-801.	2.4	101
32	Remarkable Amphibian Biomass and Abundance in an Isolated Wetland: Implications for Wetland Conservation. Conservation Biology, 2006, 20, 1457-1465.	2.4	215
33	Marbled salamanders (Ambystoma opacum) choose low elevation nest sites when cover availability is controlled. Amphibia - Reptilia, 2006, 27, 359-364.	0.1	3
34	Experimental Evidence that Nest Attendance Benefits Female Marbled Salamanders (Ambystoma) Tj ETQq0 0 0 r	gBT Over 0.2	lock 10 Tf 50
35	AMPHIBIAN POPULATION DECLINES AT SAVANNAH RIVER SITE ARE LINKED TO CLIMATE, NOT CHYTRIDIOMYCOSIS. Ecology, 2005, 86, 3232-3237.	1.5	149
36	Effects of Hatching Time for Larval Ambystomatid Salamanders. Copeia, 2002, 2002, 511-517.	1.4	41

#	Article	IF	Citations
37	Amphibian colonization and use of ponds created for trial mitigation of wetland loss. Wetlands, 2001, 21, 93-111.	0.7	105
38	The Global Decline of Reptiles, Déjà Vu Amphibians. BioScience, 2000, 50, 653.	2.2	1,212
39	Effects of Toe-Clipping and PIT-Tagging on Growth and Survival in Metamorphic Ambystoma opacum. Journal of Herpetology, 1999, 33, 344.	0.2	67
40	Perceptions of Species Abundance, Distribution, and Diversity: Lessons from Four Decades of Sampling on a Government-Managed Reserve. Environmental Management, 1997, 21, 259-268.	1.2	55
41	Structure and Dynamics of an Amphibian Community. , 1996, , 217-248.		211
42	Relationship of larval density and heterozygosity to growth and survival of juvenile marbled salamanders (Ambystoma opacum). Canadian Journal of Zoology, 1996, 74, 1122-1129.	0.4	3
43	The Effect of Larval Density on Adult Demographic Traits in Ambystoma Opacum. Ecology, 1994, 75, 1383-1396.	1.5	314
44	Mass Dynamics during Embryonic Development and Parental Investment in Cottonmouth Neonates. Journal of Herpetology, 1994, 28, 364.	0.2	4
45	Phenotypic Variation in the Arrival Time of Breeding Salamanders: Individual Repeatability and Environmental Influences. Journal of Animal Ecology, 1993, 62, 334.	1.3	47
46	Timing of Reproduction of Paedomorphic and Metamorphic Ambystoma talpoideum. American Midland Naturalist, 1993, 129, 397.	0.2	33
47	Habitat Use by Insular Populations of Mus and Peromyscus: What is the Role of Competition?. Journal of Animal Ecology, 1992, 61, 329.	1.3	15
48	Declining Amphibian Populations: The Problem of Separating Human Impacts from Natural Fluctuations. Science, 1991, 253, 892-895.	6.0	622
49	Effects of Larval Density in Ambystoma Opacum: An Experiment Large-Scale Field Enclosures. Ecology, 1990, 71, 296-306.	1.5	158
50	Determinants of nest success in the marbled salamander (Ambystoma opacum). Canadian Journal of Zoology, 1989, 67, 2277-2281.	0.4	29
51	Phosphorus and cation dynamics of components and processes in conventional and no-tillage soybean agroecosystems. Agriculture, Ecosystems and Environment, 1988, 20, 81-100.	2.5	4
52	Time and Size at Metamorphosis Related to Adult Fitness in Ambystoma Talpoideum. Ecology, 1988, 69, 184-192.	1.5	743
53	Nitrogen Cycling as Affected by Interactions of Components in a Georgia Piedmont Agroecosystem. Ecology, 1986, 67, 80-87.	1.5	30