List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8587398/publications.pdf Version: 2024-02-01

RENOîT DINSON

#	Article	IF	CITATIONS
1	mTOR Inhibitors Prevent CMV Infection through the Restoration of Functional αβ and γδT cells in Kidney Transplantation. Journal of the American Society of Nephrology: JASN, 2022, 33, 121-137.	3.0	22
2	Plasma creatinine below limit of quantification in a patient with acute kidney injury. Clinica Chimica Acta, 2022, 524, 101-105.	0.5	5
3	Fungal gasdermin-like proteins are controlled by proteolytic cleavage. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	33
4	The Dctâ^'/â^' Mouse Model to Unravel Retinogenesis Misregulation in Patients with Albinism. Genes, 2022, 13, 1164.	1.0	3
5	Identification of novel UROS mutations in a patient with congenital erythropoietic porphyria and efficient treatment by phlebotomy. Molecular Genetics and Metabolism Reports, 2021, 27, 100722.	0.4	5
6	Quiescence Through the Prism of Evolution. Frontiers in Cell and Developmental Biology, 2021, 9, 745069.	1.8	6
7	Yeast Ppz1 protein phosphatase toxicity involves the alteration of multiple cellular targets. Scientific Reports, 2020, 10, 15613.	1.6	18
8	Genetic investigation of purine nucleotide imbalance in Saccharomyces cerevisiae. Current Genetics, 2020, 66, 1163-1177.	0.8	2
9	Yeast to Study Human Purine Metabolism Diseases. Cells, 2019, 8, 67.	1.8	28
10	Structural basis for substrate selectivity and nucleophilic substitution mechanisms in human adenine phosphoribosyltransferase catalyzed reaction. Journal of Biological Chemistry, 2019, 294, 11980-11991.	1.6	4
11	Purine Homeostasis Is Necessary for Developmental Timing, Germline Maintenance and Muscle Integrity in <i>Caenorhabditis elegans</i> . Genetics, 2019, 211, 1297-1313.	1.2	19
12	Metabolomics and proteomics identify the toxic form and the associated cellular binding targets of the anti-proliferative drug AICAR. Journal of Biological Chemistry, 2019, 294, 805-815.	1.6	11
13	Dual control of NAD+ synthesis by purine metabolites in yeast. ELife, 2019, 8, .	2.8	30
14	Multiple chemo-genetic interactions between a toxic metabolite and the ubiquitin pathway in yeast. Current Genetics, 2018, 64, 1275-1286.	0.8	4
15	Structural Insights into the Forward and Reverse Enzymatic Reactions in Human Adenine Phosphoribosyltransferase. Cell Chemical Biology, 2018, 25, 666-676.e4.	2.5	12
16	AICAR Antiproliferative Properties Involve the AMPK-Independent Activation of the Tumor Suppressors LATS 1 and 2. Neoplasia, 2018, 20, 555-562.	2.3	13
17	Functional <scp>PTB</scp> phosphate transporters are present in streptophyte algae and early diverging land plants. New Phytologist, 2017, 214, 1158-1171.	3.5	25
18	A chemical genetic strategy identify the <scp>PHOSTIN</scp> , a synthetic molecule that triggers phosphate starvation responses in <i>Arabidopsis thaliana</i> . New Phytologist, 2016, 209, 161-176.	3.5	15

#	Article	IF	CITATIONS
19	Chemo-Genetic Interactions Between Histone Modification and the Antiproliferation Drug AICAR Are Conserved in Yeast and Humans. Genetics, 2016, 204, 1447-1460.	1.2	7
20	Disruption of Nucleotide Homeostasis by the Antiproliferative Drug 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside Monophosphate (AICAR). Journal of Biological Chemistry, 2015, 290, 23947-23959.	1.6	9
21	Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission. Nature Neuroscience, 2015, 18, 219-226.	7.1	223
22	New biomarkers for early diagnosis of Lesch-Nyhan disease revealed by metabolic analysis on a large cohort of patients. Orphanet Journal of Rare Diseases, 2015, 10, 7.	1.2	27
23	Comparative genomic and expression analysis of the adenosine signaling pathway members in Xenopus. Purinergic Signalling, 2015, 11, 59-77.	1.1	5
24	Serine hydroxymethyltransferase: a key player connecting purine, folate and methionine metabolism in Saccharomyces cerevisiae. Current Genetics, 2015, 61, 633-640.	0.8	8
25	A stable microtubule array drives fission yeast polarity reestablishment upon quiescence exit. Journal of Cell Biology, 2015, 210, 99-113.	2.3	17
26	Identification of Yeast and Human 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) Transporters. Journal of Biological Chemistry, 2014, 289, 16844-16854.	1.6	17
27	Increased levels of reduced cytochrome <i>b</i> and mitophagy components are required to trigger nonspecific autophagy following induced mitochondrial dysfunction. Journal of Cell Science, 2013, 126, 415-426.	1.2	29
28	A pharmacoâ€epistasis strategy reveals a new cell size controlling pathway in yeast. Molecular Systems Biology, 2013, 9, 707.	3.2	11
29	Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress. Nucleic Acids Research, 2012, 40, 5271-5282.	6.5	33
30	5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-Monophosphate (AICAR), a Highly Conserved Purine Intermediate with Multiple Effects. Metabolites, 2012, 2, 292-302.	1.3	50
31	Functional significance of four successive glycine residues in the pyrophosphate binding loop of fungal 6â€oxopurine phosphoribosyltransferases. Protein Science, 2012, 21, 1185-1196.	3.1	9
32	cAMP-induced Mitochondrial Compartment Biogenesis. Journal of Biological Chemistry, 2012, 287, 14569-14578.	1.6	17
33	Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in <i>Saccharomyces cerevisiae</i> . Genetics, 2012, 190, 885-929.	1.2	466
34	Physiological and Toxic Effects of Purine Intermediate 5-Amino-4-imidazolecarboxamide Ribonucleotide (AICAR) in Yeast. Journal of Biological Chemistry, 2011, 286, 30994-31002.	1.6	34
35	Proliferation/quiescence: the controversial "aller-retour". Cell Division, 2011, 6, 10.	1.1	23
36	Proliferation/Quiescence: When to start? Where to stop? What to stock?. Cell Division, 2011, 6, 20.	1.1	28

#	Article	IF	CITATIONS
37	Ugo1 and Mdm30 act sequentially during Fzo1-mediated mitochondrial outer membrane fusion. Journal of Cell Science, 2011, 124, 1126-1135.	1.2	77
38	Metabolic status rather than cell cycle signals control quiescence entry and exit. Journal of Cell Biology, 2011, 192, 949-957.	2.3	115
39	Reactive Oxygen Species-mediated Regulation of Mitochondrial Biogenesis in the Yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 2010, 285, 1733-1742.	1.6	57
40	The Necrotic Signal Induced by Mycophenolic Acid Overcomes Apoptosis-Resistance in Tumor Cells. PLoS ONE, 2009, 4, e5493.	1.1	22
41	Phenotypic Consequences of Purine Nucleotide Imbalance in <i>Saccharomyces cerevisiae</i> . Genetics, 2009, 183, 529-538.	1.2	33
42	Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways. Genes and Development, 2009, 23, 1399-1407.	2.7	73
43	The SPX domain of the yeast lowâ€affinity phosphate transporter Pho90 regulates transport activity. EMBO Reports, 2009, 10, 1003-1008.	2.0	81
44	Coâ€regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations. Molecular Microbiology, 2008, 68, 1583-1594.	1.2	43
45	Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. Journal of Cell Biology, 2008, 181, 737-745.	2.3	170
46	Dysregulation of Purine Nucleotide Biosynthesis Pathways Modulates Cisplatin Cytotoxicity in <i>Saccharomyces cerevisiae</i> . Molecular Pharmacology, 2008, 74, 1092-1100.	1.0	15
47	The Immunosuppressor Mycophenolic Acid Kills Activated Lymphocytes by Inducing a Nonclassical Actin-Dependent Necrotic Signal. Journal of Immunology, 2008, 181, 7630-7638.	0.4	34
48	Lethal Accumulation of Guanylic Nucleotides in <i>Saccharomyces cerevisiae HPT1</i> -Deregulated Mutants. Genetics, 2008, 178, 815-824.	1.2	20
49	Mitochondrial Oxidative Phosphorylation Is Regulated by Fructose 1,6-Bisphosphate. Journal of Biological Chemistry, 2008, 283, 26948-26955.	1.6	125
50	Polarized Growth in the Absence of F-Actin in Saccharomyces cerevisiae Exiting Quiescence. PLoS ONE, 2008, 3, e2556.	1.1	22
51	Skp1-Cullin-F-box-dependent Degradation of Aah1p Requires Its Interaction with the F-box Protein Saf1p. Journal of Biological Chemistry, 2007, 282, 20097-20103.	1.6	16
52	Proteasome- and SCF-dependent degradation of yeast adenine deaminase upon transition from proliferation to quiescence requires a new F-box protein named Saf1p. Molecular Microbiology, 2006, 60, 1014-1025.	1.2	31
53	Actin Bodies in Yeast Quiescent Cells: An Immediately Available Actin Reserve?. Molecular Biology of the Cell, 2006, 17, 4645-4655.	0.9	80
54	Guanylic nucleotide starvation affects Saccharomyces cerevisiae mother-daughter separation and may be a signal for entry into quiescence. BMC Cell Biology, 2005, 6, 24.	3.0	12

#	Article	IF	CITATIONS
55	Revisiting Purine-Histidine Cross-Pathway Regulation in Saccharomyces cerevisiae. Genetics, 2005, 170, 61-70.	1.2	82
56	Low Affinity Orthophosphate Carriers Regulate PHO Gene Expression Independently of Internal Orthophosphate Concentration in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 35273-35280.	1.6	55
57	The yeast ISN1 (YOR155c) gene encodes a new type of IMP-specific 5'-nucleotidase. BMC Biochemistry, 2003, 4, 4.	4.4	24
58	Sub-families of α/β Barrel Enzymes: A New Adenine Deaminase Family. Journal of Molecular Biology, 2003, 334, 1117-1131.	2.0	32
59	The Critical cis-Acting Element Required for IMD2 Feedback Regulation by CDP Is a TATA Box Located 202 Nucleotides Upstream of the Transcription Start Site. Molecular and Cellular Biology, 2003, 23, 6267-6278.	1.1	17
60	Transcription Initiation of the Yeast IMD2 Gene Is Abolished in Response to Nutrient Limitation through a Sequence in Its Coding Region. Molecular and Cellular Biology, 2003, 23, 6279-6290.	1.1	13
61	Screening the Yeast "Disruptome―for Mutants Affecting Resistance to the Immunosuppressive Drug, Mycophenolic Acid. Journal of Biological Chemistry, 2002, 277, 27036-27044.	1.6	88
62	Identification of genes affecting selenite toxicity and resistance in Saccharomyces cerevisiae. Molecular Microbiology, 2002, 36, 679-687.	1.2	63
63	Redox regulation of AMP synthesis in yeast: a role of the Bas1p and Bas2p transcription factors. Molecular Microbiology, 2002, 36, 1460-1469.	1.2	11
64	Proteome Analysis and Morphological Studies Reveal Multiple Effects of the Immunosuppressive Drug Mycophenolic Acid Specifically Resulting from Guanylic Nucleotide Depletion. Journal of Biological Chemistry, 2001, 276, 46237-46242.	1.6	25
65	Yeast AMP Pathway Genes Respond to Adenine through Regulated Synthesis of a Metabolic Intermediate. Molecular and Cellular Biology, 2001, 21, 7901-7912.	1.1	82
66	Transcriptional Regulation of the Yeast GMP Synthesis Pathway by Its End Products. Journal of Biological Chemistry, 2001, 276, 1523-1530.	1.6	81
67	Highly conserved features of DNA binding between two divergent members of the Myb family of transcription factors. Nucleic Acids Research, 2001, 29, 527-535.	6.5	8
68	Signaling through regulated transcription factor interaction: mapping of a regulatory interaction domain in the Myb-related Bas1p. Nucleic Acids Research, 2000, 28, 4665-4673.	6.5	25
69	Yeast GMP Kinase Mutants Constitutively Express AMP Biosynthesis Genes by Phenocopying a Hypoxanthine-Guanine Phosphoribosyltransferase Defect. Genetics, 2000, 156, 953-961.	1.2	18
70	Only one of the charged amino acids located in membrane-spanning regions is important for the function of the Saccharomyces cerevisiae uracil permease. Biochemical Journal, 1999, 339, 37-42.	1.7	13
71	APT1 , but Not APT2 , Codes for a Functional Adenine Phosphoribosyltransferase in Saccharomyces cerevisiae. Journal of Bacteriology, 1999, 181, 347-352.	1.0	19
72	Post-translational fate of CAN1 permease of Saccharomyces cerevisiae. , 1998, 14, 215-224.		18

#	Article	IF	CITATIONS
73	Role of the Myb-like protein Bas1p in Saccharomyces cerevisiae: a proteome analysis. Molecular Microbiology, 1998, 30, 557-566.	1.2	81
74	Mutations in the yeast Myb-like protein Bas1p resulting in discrimination between promoters in vivo but notin vitro. Nucleic Acids Research, 1998, 26, 3977-3985.	6.5	21
75	Characterization of the Saccharomyces cerevisiaeCytosine Transporter Using Energizable Plasma Membrane Vesicles. Journal of Biological Chemistry, 1997, 272, 28918-28924.	1.6	10
76	Functional Analysis of Mutated Purine-Cytosine Permease from Saccharomyces cerevisiae. Journal of Biological Chemistry, 1997, 272, 9697-9702.	1.6	28
77	The Isolation and Characterization of <i>Saccharomyces cerevisiae</i> Mutants That Constitutively Express Purine Biosynthetic Genes. Genetics, 1997, 147, 383-397.	1.2	62
78	Immunological characterization of the purine-cytosine permease ofSaccharomyces cerevisiae: Evidence ofin Vivo phosphorylation of the carrier. Folia Microbiologica, 1996, 41, 121-124.	1.1	2
79	In vivo Phosphorylation of the Purine/Cytosine Permease from the Plasma Membrane of the Yeast Saccharomyces cerevisiae. FEBS Journal, 1996, 239, 439-444.	0.2	16
80	MBR1 and MBR3, two related yeast genes that can suppress the growth defect of hap2, hap3 and hap4 mutants. Molecular Genetics and Genomics, 1994, 243, 575-583.	2.4	22
81	A genetic screen to isolate genes regulated by the yeast CCAAT-box binding protein Hap2p. Yeast, 1994, 10, 1273-1283.	0.8	55