
Guy Brasseur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/858737/publications.pdf Version: 2024-02-01

CITY RDASSELLD

#	Article	IF	CITATIONS
1	Amplified Upward Trend of the Joint Occurrences of Heat and Ozone Extremes in China over 2013–20. Bulletin of the American Meteorological Society, 2022, 103, E1330-E1342.	1.7	10
2	Segregation of Atmospheric Oxidants in Turbulent Urban Environments. Atmosphere, 2022, 13, 315.	1.0	5
3	ls atmospheric oxidation capacity better in indicating tropospheric O3 formation?. Frontiers of Environmental Science and Engineering, 2022, 16, .	3.3	12
4	Global Changes in Secondary Atmospheric Pollutants During the 2020 COVIDâ€19 Pandemic. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034213.	1.2	54
5	Response of surface ozone concentration to emission reduction and meteorology during the COVIDâ€19 lockdown in Europe. Meteorological Applications, 2021, 28, e1990.	0.9	23
6	Chemical Weather and Chemical Climate. AGU Advances, 2021, 2, e2021AV000399.	2.3	2
7	Atmospheric Impacts of COVID-19 on NOx and VOC Levels over China Based on TROPOMI and IASI Satellite Data and Modeling. Atmosphere, 2021, 12, 946.	1.0	13
8	Predicting the effect of confinement on the COVID-19 spread using machine learning enriched with satellite air pollution observations. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
9	Ozone Anomalies in the Free Troposphere During the COVIDâ€19 Pandemic. Geophysical Research Letters, 2021, 48, e2021CL094204.	1.5	22
10	Changes in global air pollutant emissions during the COVID-19 pandemic: a dataset for atmospheric modeling. Earth System Science Data, 2021, 13, 4191-4206.	3.7	57
11	Diverse response of surface ozone to COVID-19 lockdown in China. Science of the Total Environment, 2021, 789, 147739.	3.9	44
12	The Impact on the Ozone Layer of a Potential Fleet of Civil Hypersonic Aircraft. Earth's Future, 2020, 8, e2020EF001626.	2.4	10
13	The Response in Air Quality to the Reduction of Chinese Economic Activities During the COVIDâ€19 Outbreak. Geophysical Research Letters, 2020, 47, e2020GL088070.	1.5	324
14	The Importance of Fundamental Science for Society: The Success Story of Ozone Research. Perspectives of Earth and Space Scientists, 2020, 1, e2020CN000136.	0.2	2
15	The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA). Bulletin of the American Meteorological Society, 2020, 101, E1743-E1760.	1.7	21
16	Twentyâ€Five Years of Lower Tropospheric Ozone Observations in Tropical East Asia: The Influence of Emissions and Weather Patterns. Geophysical Research Letters, 2019, 46, 11463-11470.	1.5	73
17	Thank you to Earth's Future Reviewers in 2018. Earth's Future, 2019, 7, 584-586.	2.4	0
18	Ensemble forecasts of air quality in eastern China – Part 1: Model description and implementation of the MarcoPolo–Panda prediction system, version 1. Geoscientific Model Development, 2019, 12, 33-67.	1.3	39

GUY BRASSEUR

#	Article	IF	CITATIONS
19	Designing the Climate Observing System of the Future. Earth's Future, 2018, 6, 80-102.	2.4	24
20	Science Directions in a Post COP21 World of Transient Climate Change: Enabling Regional to Local Predictions in Support of Reliable Climate Information. Earth's Future, 2018, 6, 1498-1507.	2.4	5
21	Five steps to improve air-quality forecasts. Nature, 2018, 561, 27-29.	13.7	38
22	Climate services: Lessons learned and future prospects. Earth's Future, 2016, 4, 79-89.	2.4	168
23	Impact of Aviation on Climate: FAA's Aviation Climate Change Research Initiative (ACCRI) Phase II. Bulletin of the American Meteorological Society, 2016, 97, 561-583.	1.7	93
24	International Geosphere–Biosphere Programme and Earth system science: Three decades of co-evolution. Anthropocene, 2015, 12, 3-16.	1.6	57
25	Effects of injected ice particles in the lower stratosphere on the Antarctic ozone hole. Earth's Future, 2015, 3, 143-158.	2.4	1
26	The Role of Climate ServicesClimate services in AdaptingAdaptation to Climate Variability and Change. , 2014, , 1-16.		3
27	A set of diagnostics for evaluating chemistry-climate models in the extratropical tropopause region. Journal of Geophysical Research, 2007, 112, .	3.3	55
28	Sensitivity of chemical tracers to meteorological parameters in the MOZARTâ€3 chemical transport model. Journal of Geophysical Research, 2007, 112, .	3.3	395
29	Effect of the 11-year cycle of solar activity on characteristics of the total ozone annual variation. Izvestiya - Atmospheric and Oceanic Physics, 2007, 43, 344-356.	0.2	12
30	Long-term changes in the mesosphere calculated by a two-dimensional model. Journal of Geophysical Research, 2005, 110, .	3.3	29
31	Assessment of the global impact of aerosols on tropospheric oxidants. Journal of Geophysical Research, 2005, 110, .	3.3	289
32	A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	848
33	Response of the mesosphere to human-induced perturbations and solar variability calculated by a 2-D model. Journal of Geophysical Research, 2002, 107, ACH 7-1.	3.3	52
34	MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description. Journal of Geophysical Research, 1998, 103, 28265-28289.	3.3	402
35	Atmospheric impact of NOxemissions by subsonic aircraft: A three-dimensional model study. Journal of Geophysical Research, 1996, 101, 1423-1428.	3.3	122
36	The impact of high altitude aircraft on the ozone layer in the stratosphere. Journal of Atmospheric Chemistry, 1994, 18, 103-128.	1.4	23

#	Article	IF	CITATIONS
37	Effect of longâ€term solar variability in a twoâ€dimensional interactive model of the middle atmosphere. Journal of Geophysical Research, 1993, 98, 20413-20427.	3.3	86
38	Future changes in stratospheric ozone and the role of heterogeneous chemistry. Nature, 1990, 348, 626-628.	13.7	113