Gordon F Christopher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8586338/publications.pdf

Version: 2024-02-01

38 papers 2,023 citations

377584 21 h-index 36 g-index

38 all docs 38 docs citations

38 times ranked 3014 citing authors

#	Article	IF	CITATIONS
1	Effects of non-ionic surfactant on the formation of pellicles by Pseudomonas aeruginosa. Rheologica Acta, 2022, 61, 59-68.	1.1	4
2	Microrheology of Pseudomonas aeruginosa biofilms grown in wound beds. Npj Biofilms and Microbiomes, 2022, 8, .	2.9	13
3	3D printed agar/ calcium alginate hydrogels with high shape fidelity and tailorable mechanical properties. Polymer, 2021, 214, 123238.	1.8	44
4	Effect of collagen and EPS components on the viscoelasticity of <i>Pseudomonas aeruginosa</i> biofilms. Soft Matter, 2021, 17, 6225-6237.	1,2	13
5	Rheological variability of Pseudomonas aeruginosa biofilms. Rheologica Acta, 2021, 60, 219-230.	1.1	9
6	Rheological behavior of a low crystallinity polyolefin-modified asphalt binder for flexible pavements. Case Studies in Construction Materials, 2021, 15, e00640.	0.8	3
7	Synthesis and characterization of polymeric films with stress-altered aluminum particle fillers. Journal of Materials Science, 2020, 55, 14229-14242.	1.7	4
8	Interfacial Viscoelasticity of Self-Assembled Hydrophobic/Hydrophilic Particles at an Air/Water Interface. Langmuir, 2019, 35, 13116-13125.	1.6	12
9	Two component model oils for interfacial shear characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123780.	2.3	3
10	2D stokesian simulation of particle aggregation at quiescent air/oil-water interfaces. Journal of Colloid and Interface Science, 2019, 553, 259-268.	5.0	13
11	Role of Flagella, Type IV Pili, Biosurfactants, and Extracellular Polymeric Substance Polysaccharides on the Formation of Pellicles by Pseudomonas aeruginosa. Langmuir, 2019, 35, 5294-5304.	1.6	26
12	Effects of Shear Rate during Energetic Material Processing on Reactivity. Advanced Engineering Materials, 2019, 21, 1801324.	1.6	4
13	Ultrasensitive Wearable Strain Sensors of 3D Printing Tough and Conductive Hydrogels. Polymers, 2019, 11, 1873.	2.0	30
14	Modifying interfacial interparticle forces to alter microstructure and viscoelasticity of densely packed particle laden interfaces. Journal of Colloid and Interface Science, 2019, 536, 30-41.	5.0	23
15	2D Stokesian Approach to Modeling Flow Induced Deformation of Particle Laden Interfaces. Langmuir, 2018, 34, 904-916.	1.6	4
16	Combined interfacial shear rheology and microstructure visualization of asphaltenes at air-water and oil-water interfaces. Journal of Rheology, 2018, 62, 1-10.	1.3	43
17	Correlation between valvular interstitial cell morphology and phenotypes: A novel way to detect activation. Tissue and Cell, 2018, 54, 38-46.	1.0	10
18	Characterizing the feasibility of processing wet granular materials to improve rheology for 3D printing. Journal of Materials Science, 2017, 52, 13040-13053.	1.7	68

#	Article	IF	Citations
19	3D processing and characterization of acrylonitrile butadiene styrene (ABS) energetic thin films. Journal of Materials Science, 2017, 52, 993-1004.	1.7	25
20	Growth of viscoelastic instabilities around linear cylinder arrays. Physics of Fluids, 2016, 28, .	1.6	41
21	Role of capillarity and microstructure on interfacial viscoelasticity of particle laden interfaces. Journal of Rheology, 2016, 60, 35-45.	1.3	40
22	Cavitation structures formed during the collision of a sphere with an ultra-viscous wetted surface. Journal of Fluid Mechanics, 2016, 796, 473-515.	1.4	7
23	Spreading, encapsulation and transition to arrested shapes during drop impact onto hydrophobic powders. Journal of Colloid and Interface Science, 2016, 468, 10-20.	5.0	28
24	Effect of Particulate Contaminants on the Development of Biofilms at Air/Water Interfaces. Langmuir, 2016, 32, 2724-2730.	1.6	12
25	The nonlinear viscoelasticity of hyaluronic acid and its role in joint lubrication. Soft Matter, 2015, 11, 2596-2603.	1.2	41
26	Contact Angle Distribution of Particles at Fluid Interfaces. Langmuir, 2015, 31, 891-897.	1.6	36
27	Mechanisms of onset for moderate Mach number instabilities of viscoelastic flows around confined cylinders. Rheologica Acta, 2015, 54, 805-815.	1.1	38
28	3D printing of an extremely tough hydrogel. RSC Advances, 2015, 5, 81324-81329.	1.7	97
29	Effect of interfacial viscoelasticity on the bulk linear viscoelastic moduli of globular protein solutions. Physical Review E, 2014, 89, 052306.	0.8	10
30	The role of protein content on the steady and oscillatory shear rheology of model synovial fluids. Soft Matter, 2014, 10, 5965-5973.	1.2	25
31	Simultaneous Interfacial Rheology and Microstructure Measurement of Densely Aggregated Particle Laden Interfaces Using a Modified Double Wall Ring Interfacial Rheometer. Langmuir, 2014, 30, 9752-9760.	1.6	59
32	Large Deborah number flows around confined microfluidic cylinders. Rheologica Acta, 2013, 52, 485-497.	1.1	59
33	Sub-Diffraction Limit Three Dimensional Particle Tracking Velocimetry. , 2013, , .		O
34	Development of a MEMS based dynamic rheometer. Lab on A Chip, 2010, 10, 2749.	3.1	35
35	Coalescence and splitting of confined droplets at microfluidic junctions. Lab on A Chip, 2009, 9, 1102.	3.1	176
36	Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Physical Review E, 2008, 78, 036317.	0.8	291

#	Article	IF	CITATIONS
37	Microfluidic methods for generating continuous droplet streams. Journal Physics D: Applied Physics, 2007, 40, R319-R336.	1.3	677
38	Droplet Breakup in Shear and Elongation Dominated Flows in Microfluidic Devices., 2005,, 669.		0