Sanshiro Hanada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8585713/publications.pdf

Version: 2024-02-01

430754 434063 1,394 36 18 31 citations h-index g-index papers 37 37 37 2357 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chemical Reactions on Surface Molecules Attached to Silicon Quantum Dots. Journal of the American Chemical Society, 2010, 132, 248-253.	6.6	226
2	Vascularized cancer on a chip: The effect of perfusion on growth and drug delivery of tumor spheroid. Biomaterials, 2020, 229, 119547.	5.7	201
3	Cell-Based in Vitro Blood–Brain Barrier Model Can Rapidly Evaluate Nanoparticles' Brain Permeability in Association with Particle Size and Surface Modification. International Journal of Molecular Sciences, 2014, 15, 1812-1825.	1.8	135
4	Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnology, 2008, 19, 415102.	1.3	126
5	Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Archives of Toxicology, 2011, 85, 707-720.	1.9	126
6	Size Controlled Synthesis of Germanium Nanocrystals by Hydride Reducing Agents and Their Biological Applications. Chemistry of Materials, 2010, 22, 482-486.	3.2	98
7	Roles of chemokine receptor CX3CR1 in maintaining murine bone homeostasis through the regulation of both osteoblasts and osteoclasts. Journal of Cell Science, 2013, 126, 1032-45.	1.2	59
8	Deficiency of Chemokine Receptor CCR1 Causes Osteopenia Due to Impaired Functions of Osteoclasts and Osteoblasts. Journal of Biological Chemistry, 2010, 285, 28826-28837.	1.6	49
9	Enhanced Functional Maturation of Fetal Porcine Hepatocytes in Three-Dimensional Poly-L-lactic Acid Scaffolds: A Culture Condition Suitable for Engineered Liver Tissues in Large-Scale Animal Studies. Cell Transplantation, 2006, 15, 799-809.	1.2	38
10	Toward engineering of vascularized three-dimensional liver tissue equivalents possessing a clinically significant mass. Biochemical Engineering Journal, 2010, 48, 348-361.	1.8	33
11	Serum/glucocorticoid-regulated kinase 1 as a novel transcriptional target of bone morphogenetic protein-ALK1 receptor signaling in vascular endothelial cells. Angiogenesis, 2018, 21, 415-423.	3.7	29
12	Murine neonatal ketogenesis preserves mitochondrial energetics by preventing protein hyperacetylation. Nature Metabolism, 2021, 3, 196-210.	5.1	29
13	Immune Response Induced by Fluorescent Nanocrystal Quantum Dots <i>In Vitro</i> and <i>In Vivo</i> IEEE Transactions on Nanobioscience, 2009, 8, 51-57.	2.2	28
14	Effects of Silica and Titanium Oxide Particles on a Human Neural Stem Cell Line: Morphology, Mitochondrial Activity, and Gene Expression of Differentiation Markers. International Journal of Molecular Sciences, 2014, 15, 11742-11759.	1.8	27
15	Evaluation of Anti-Inflammatory Drug-Conjugated Silicon Quantum Dots: Their Cytotoxicity and Biological Effect. International Journal of Molecular Sciences, 2013, 14, 1323-1334.	1.8	24
16	Direct Oxygen Supply with Polydimethylsiloxane (PDMS) Membranes Induces a Spontaneous Organization of Thick Heterogeneous Liver Tissues from Rat Fetal Liver Cells in Vitro. Cell Transplantation, 2012, 21, 401-410.	1.2	23
17	Mycobacterium tuberculosisescapes from the phagosomes of infected human osteoclasts reprograms osteoclast development via dysregulation of cytokines and chemokines. Pathogens and Disease, 2014, 70, 28-39.	0.8	22
18	Soluble Factor–DependentIn VitroGrowth and Maturation of Rat Fetal Liver Cells in a Three-Dimensional Culture System. Tissue Engineering - Part A, 2008, 14, 149-160.	1.6	21

#	Article	IF	CITATIONS
19	A new perfusion culture method with a self-organized capillary network. PLoS ONE, 2020, 15, e0240552.	1.1	20
20	Mechanical loading of intraluminal pressure mediates wound angiogenesis by regulating the TOCA family of F-BAR proteins. Nature Communications, 2022, 13, 2594.	5.8	16
21	GFP expression by intracellular gene delivery of GFP-coding fragments using nanocrystal quantum dots. Nanotechnology, 2008, 19, 495102.	1.3	15
22	Identification of neuronal and angiogenic growth factors in an in vitro blood-brain barrier model system: Relevance in barrier integrity and tight junction formation and complexity. Microvascular Research, 2017, 111, 1-11.	1.1	14
23	Toxicity test: Fluorescent silicon nanoparticles. Journal of Physics: Conference Series, 2011, 304, 012042.	0.3	6
24	Flocculation and Re-Dispersion of Colloidal Quantum Dots. Journal of Chemical Engineering of Japan, 2012, 45, 917-923.	0.3	6
25	Perfusable Vascular Network with a Tissue Model in a Microfluidic Device. Journal of Visualized Experiments, 2018, , .	0.2	6
26	Detection of Thyroid Carcinoma Antigen with Quantum Dots and Monoclonal IgM Antibody (JT-95) System. Journal of Nanomaterials, 2010, 2010, 1-7.	1.5	4
27	Roles of chemokine receptor CX3CR1 in maintaining murine bone homeostasis through the regulation of both osteoblasts and osteoclasts. Development (Cambridge), 2013, 140, e1008-e1008.	1.2	3
28	Delivery of gene-expressing fragments using quantum dot. Proceedings of SPIE, 2009, , .	0.8	2
29	Application of in vitro BBB model to measure permeability of nanoparticles. Journal of Physics: Conference Series, 2013, 429, 012028.	0.3	2
30	Soluble Factor–DependentIn VitroGrowth and Maturation of Rat Fetal Liver Cells in a Three-Dimensional Culture System. Tissue Engineering, 2008, 14, 149-160.	4.9	2
31	Toxicity of carbon group quantum dots. , 2009, , .		1
32	An On-Chip Vascular Network to Investigate Pericyte Migration and Intercellular Signaling. , 2020, , .		1
33	Three-Dimensional Culture of Fetal Mouse, Rat, and Porcine Hepatocytes., 2013,, 47-63.		1
34	Engineering a Perfusable Vascular Network in a Microfluidic Device for a Morphological Analysis. IEEJ Transactions on Sensors and Micromachines, 2018, 138, 275-280.	0.0	1
35	Re-disperse of aggregated colloidal quantum dots. Proceedings of SPIE, 2010, , .	0.8	0
36	Size- and structure-dependent toxicity of silica particulates. , 2011, , .		0