Laura Marroqui Esclapez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8585018/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	G protein-coupled estrogen receptor activation by bisphenol-A disrupts the protection from apoptosis conferred by the estrogen receptors ERα and ERĨ² in pancreatic beta cells. Environment International, 2022, 164, 107250.	4.8	19
2	In Vitro Assays to Identify Metabolism-Disrupting Chemicals with Diabetogenic Activity in a Human Pancreatic β-Cell Model. International Journal of Molecular Sciences, 2022, 23, 5040.	1.8	12
3	Bisphenol-S and Bisphenol-F alter mouse pancreatic β-cell ion channel expression and activity and insulin release through an estrogen receptor ERβ mediated pathway. Chemosphere, 2021, 265, 129051.	4.2	34
4	Type I interferons as key players in pancreatic β-cell dysfunction in type 1 diabetes. International Review of Cell and Molecular Biology, 2021, 359, 1-80.	1.6	19
5	Morphological and functional adaptations of pancreatic alpha-cells during late pregnancy in the mouse. Metabolism: Clinical and Experimental, 2020, 102, 153963.	1.5	19
6	Toxic Effects of Common Environmental Pollutants in Pancreatic Î ² -Cells and the Onset of Diabetes Mellitus. , 2019, , 764-775.		7
7	Bisphenol A Regulates Sodium Ramp Currents in Mouse Dorsal Root Ganglion Neurons and Increases Nociception. Scientific Reports, 2019, 9, 10306.	1.6	9
8	Oestrogen receptor \hat{I}^2 mediates the actions of bisphenol-A on ion channel expression in mouse pancreatic beta cells. Diabetologia, 2019, 62, 1667-1680.	2.9	46
9	Pancreatic alpha-cell mass in the early-onset and advanced stage of a mouse model of experimental autoimmune diabetes. Scientific Reports, 2019, 9, 9515.	1.6	25
10	DEXI, a candidate gene for type 1 diabetes, modulates rat and human pancreatic beta cell inflammation via regulation of the type I IFN/STAT signalling pathway. Diabetologia, 2019, 62, 459-472.	2.9	32
11	Cortistatin regulates glucose-induced electrical activity and insulin secretion in mouse pancreatic beta-cells. Molecular and Cellular Endocrinology, 2019, 479, 123-132.	1.6	5
12	SRp55 Regulates a Splicing Network That Controls Human Pancreatic β-Cell Function and Survival. Diabetes, 2018, 67, 423-436.	0.3	46
13	IFN-α induces a preferential long-lasting expression of MHC class I in human pancreatic beta cells. Diabetologia, 2018, 61, 636-640.	2.9	50
14	Timing of Exposure and Bisphenol-A: Implications for Diabetes Development. Frontiers in Endocrinology, 2018, 9, 648.	1.5	29
15	PDL1 is expressed in the islets of people with type 1 diabetes and is up-regulated by interferons-α and-γ via IRF1 induction. EBioMedicine, 2018, 36, 367-375.	2.7	138
16	Mitochondria as target of endocrine-disrupting chemicals: implications for type 2 diabetes. Journal of Endocrinology, 2018, 239, R27-R45.	1.2	41
17	Interferon-α mediates human beta cell HLA class I overexpression, endoplasmic reticulum stress and apoptosis, three hallmarks of early human type 1 diabetes. Diabetologia, 2017, 60, 656-667.	2.9	135
18	dUTPase (<i>DUT</i>) Is Mutated in a Novel Monogenic Syndrome With Diabetes and Bone Marrow Failure, Diabetes, 2017, 66, 1086-1096.	0.3	22

#	Article	IF	CITATIONS
19	Long-Term GABA Administration Induces Alpha Cell-Mediated Beta-like Cell Neogenesis. Cell, 2017, 168, 73-85.e11.	13.5	259
20	Protective Role of Complement C3 Against Cytokine-Mediated β-Cell Apoptosis. Endocrinology, 2017, 158, 2503-2521.	1.4	32
21	Molecular mechanisms involved in the non-monotonic effect of bisphenol-a on Ca2+ entry in mouse pancreatic β-cells. Scientific Reports, 2017, 7, 11770.	1.6	74
22	MicroRNAs miR-23a-3p, miR-23b-3p, and miR-149-5p Regulate the Expression of Proapoptotic BH3-Only Proteins DP5 and PUMA in Human Pancreatic β-Cells. Diabetes, 2017, 66, 100-112.	0.3	87
23	Genome-wide hydroxymethylcytosine pattern changes in response to oxidative stress. Scientific Reports, 2015, 5, 12714.	1.6	48
24	Differential cell autonomous responses determine the outcome of coxsackievirus infections in murine pancreatic α and β cells. ELife, 2015, 4, e06990.	2.8	53
25	Pancreatic α Cells are Resistant to Metabolic Stress-induced Apoptosis in Type 2 Diabetes. EBioMedicine, 2015, 2, 378-385.	2.7	80
26	<i>TYK2</i> , a Candidate Gene for Type 1 Diabetes, Modulates Apoptosis and the Innate Immune Response in Human Pancreatic β-Cells. Diabetes, 2015, 64, 3808-3817.	0.3	98
27	Pancreatic alpha-cells from female mice undergo morphofunctional changes during compensatory adaptations of the endocrine pancreas to diet-induced obesity. Scientific Reports, 2015, 5, 11622.	1.6	32
28	<i>BACH2</i> , a Candidate Risk Gene for Type 1 Diabetes, Regulates Apoptosis in Pancreatic β-Cells via JNK1 Modulation and Crosstalk With the Candidate Gene <i>PTPN2</i> . Diabetes, 2014, 63, 2516-2527.	0.3	92
29	Nutrient regulation of glucagon secretion: involvement in metabolism and diabetes. Nutrition Research Reviews, 2014, 27, 48-62.	2.1	38
30	Insulin Hypersecretion in Islets From Diet-Induced Hyperinsulinemic Obese Female Mice Is Associated With Several Functional Adaptations in Individual β-Cells. Endocrinology, 2013, 154, 3515-3524.	1.4	70
31	Involvement of the Clock Gene Rev-erb alpha in the Regulation of Glucagon Secretion in Pancreatic Alpha-Cells. PLoS ONE, 2013, 8, e69939.	1.1	63
32	Role of leptin in the pancreatic β-cell: effects and signaling pathways. Journal of Molecular Endocrinology, 2012, 49, R9-R17.	1.1	117
33	The Clock Gene <i>Rev-erb</i> î± Regulates Pancreatic î²-Cell Function: Modulation by Leptin and High-Fat Diet. Endocrinology, 2012, 153, 592-601.	1.4	92
34	Functional and Structural Adaptations in the Pancreatic α-Cell and Changes in Glucagon Signaling During Protein Malnutrition. Endocrinology, 2012, 153, 1663-1672.	1.4	10
35	Leptin downregulates expression of the gene encoding glucagon in alphaTC1-9 cells and mouse islets. Diabetologia, 2011, 54, 843-851.	2.9	28
36	Reduced Insulin Secretion in Protein Malnourished Mice Is Associated with Multiple Changes in the β-Cell Stimulus-Secretion Coupling. Endocrinology, 2010, 151, 3543-3554.	1.4	30

#	Article	IF	CITATIONS
37	The Atrial Natriuretic Peptide and Guanylyl Cyclase-A System Modulates Pancreatic Î ² -Cell Function. Endocrinology, 2010, 151, 3665-3674.	1.4	38
38	Glucocorticoids in Vivo Induce Both Insulin Hypersecretion and Enhanced Glucose Sensitivity of Stimulus-Secretion Coupling in Isolated Rat Islets. Endocrinology, 2010, 151, 85-95.	1.4	62
39	Inhibitory Effects of Leptin on Pancreatic \hat{I} ±-Cell Function. Diabetes, 2009, 58, 1616-1624.	0.3	68
40	Inhibitory effect of mycophenolic acid on the replication of infectious pancreatic necrosis virus and viral hemorrhagic septicemia virus. Antiviral Research, 2008, 80, 332-338.	1.9	19
41	Expression and antiviral activity of a β-defensin-like peptide identified in the rainbow trout (Oncorhynchus mykiss) EST sequences. Molecular Immunology, 2008, 45, 757-765.	1.0	110
42	Assessment of the inhibitory effect of ribavirin on the rainbow trout rhabdovirus VHSV by real-time reverse-transcription PCR. Veterinary Microbiology, 2007, 122, 52-60.	0.8	32
43	PDL1 is Expressed in the Islets of People With Type 1 Diabetes and is Up-regulated by Interferons and SSRN Electronic Journal, 0, , .	0.4	0