Dominique Bernard-Gallon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8584825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of GSK-J4 on JMJD3 Histone Demethylase in Mouse Prostate Cancer Xenografts. Cancer Genomics and Proteomics, 2022, 19, 339-349.	2.0	6
2	Role of UTX Histone Demethylase in Regulation of MGMT, TRA2A, U2AF1, and RPS6KA2 Genes in Prostate Cancer Cell Lines. OMICS A Journal of Integrative Biology, 2021, 25, 129-131.	2.0	2
3	The Functions of the Demethylase JMJD3 in Cancer. International Journal of Molecular Sciences, 2021, 22, 968.	4.1	15
4	The Inhibition of the Histone Methyltransferase EZH2 by DZNEP or SiRNA Demonstrates Its Involvement in <i>MGMT</i> , <i>TRA2A</i> , <i>RPS6KA2</i> , and <i>U2AF1</i> Gene Regulation in Prostate Cancer. OMICS A Journal of Integrative Biology, 2020, 24, 116-118.	2.0	7
5	Digging Deeper into Breast Cancer Epigenetics: Insights from Chemical Inhibition of Histone Acetyltransferase TIP60 <i>In Vitro</i> . OMICS A Journal of Integrative Biology, 2020, 24, 581-591.	2.0	2
6	TIP60/P400/H4K12ac Plays a Role as a Heterochromatin Back-up Skeleton in Breast Cancer. Cancer Genomics and Proteomics, 2020, 17, 687-694.	2.0	5
7	Epi-drugs as triple-negative breast cancer treatment. Epigenomics, 2020, 12, 725-742.	2.1	9
8	Role of JMJD3 Demethylase and Its Inhibitor GSK-J4 in Regulation of <i>MGMT</i> , <i>TRA2A</i> , <i>RPS6KA2</i> , and <i>U2AF1</i> Genes in Prostate Cancer Cell Lines. OMICS A Journal of Integrative Biology, 2020, 24, 505-507.	2.0	9
9	TIP60 Inhibitor TH1834 Reduces Breast Cancer Progression in Xenografts in Mice. OMICS A Journal of Integrative Biology, 2019, 23, 457-459.	2.0	12
10	SIRT1 in Colorectal Cancer: A Friend or Foe?. OMICS A Journal of Integrative Biology, 2018, 22, 298-300.	2.0	6
11	TIP60: an actor in acetylation of H3K4 and tumor development in breast cancer. Epigenomics, 2018, 10, 1415-1430.	2.1	20
12	Breaking down the Contradictory Roles of Histone Deacetylase SIRT1 in Human Breast Cancer. Cancers, 2018, 10, 409.	3.7	26
13	Exciting History of Tip60 and Its Companions in Carcinogenesis Across the Heterochromatin Landscapes. OMICS A Journal of Integrative Biology, 2018, 22, 626-628.	2.0	6
14	A new metabolic gene signature in prostate cancer regulated by JMJD3 and EZH2. Oncotarget, 2018, 9, 23413-23425.	1.8	27
15	SIRT1-dependent epigenetic regulation of H3 and H4 histone acetylation in human breast cancer. Oncotarget, 2018, 9, 30661-30678.	1.8	44
16	TIP60 Histone Acetyltransferase in Adipose Tissue: Possible Linkages with Breast Cancer Development?. OMICS A Journal of Integrative Biology, 2017, 21, 684-686.	2.0	1
17	The Epigenetic Landscape of Promoter Genome-wide Analysis in Breast Cancer. Scientific Reports, 2017, 7, 6597.	3.3	25
18	EZH2 Histone Methyltransferase and JMJD3 Histone Demethylase Implications in Prostate Cancer. OMICS A Journal of Integrative Biology, 2017, 21, 751-753.	2.0	5

#	Article	IF	CITATIONS
19	Global analysis of H3K27me3 as an epigenetic marker in prostate cancer progression. BMC Cancer, 2017, 17, 261.	2.6	79
20	Dual SIRT1 expression patterns strongly suggests its bivalent role in human breast cancer. Oncotarget, 2017, 8, 110922-110930.	1.8	32
21	H3K4 acetylation, H3K9 acetylation and H3K27 methylation in breast tumor molecular subtypes. Epigenomics, 2016, 8, 909-924.	2.1	28
22	Molecular and Epigenetic Biomarkers in Luminal Androgen Receptor: A Triple Negative Breast Cancer Subtype. OMICS A Journal of Integrative Biology, 2016, 20, 610-613.	2.0	4
23	The JMJD3 Histone Demethylase and the EZH2 Histone Methyltransferase in Prostate Cancer. OMICS A Journal of Integrative Biology, 2016, 20, 123-125.	2.0	13
24	High-throughput «Omics» technologies: New tools for the study of triple-negative breast cancer. Cancer Letters, 2016, 382, 77-85.	7.2	29
25	Epigenetic Modifications with DZNep, NaBu and SAHA in Luminal and Mesenchymal-like Breast Cancer Subtype Cells. Cancer Genomics and Proteomics, 2016, 13, 291-303.	2.0	6
26	A bivalent role of TIP60 histone acetyl transferase in human cancer. Epigenomics, 2015, 7, 1351-1363.	2.1	57
27	Prostate cancer: The main risk and protective factors–ÂEpigenetic modifications. Annales D'Endocrinologie, 2015, 76, 25-41.	1.4	32
28	Genome-Wide DNA Methylation Modified by Soy Phytoestrogens: Role for Epigenetic Therapeutics in Prostate Cancer?. OMICS A Journal of Integrative Biology, 2015, 19, 209-219.	2.0	28
29	The Role of Soy Phytoestrogens on Genetic and Epigenetic Mechanisms of Prostate Cancer. The Enzymes, 2015, 37, 193-221.	1.7	7
30	Leptin Induces a Proliferative Response in Breast Cancer Cells but Not in Normal Breast Cells. Nutrition and Cancer, 2014, 66, 645-655.	2.0	47
31	Epigenetics of Prostate Cancer: Distribution of Histone H3K27me3 Biomarkers in Peri-Tumoral Tissue. OMICS A Journal of Integrative Biology, 2014, 18, 207-209.	2.0	14
32	Epigenetic mechanisms of breast cancer: an update of the current knowledge. Epigenomics, 2014, 6, 651-664.	2.1	83
33	The association between Histone 3 Lysine 27 Trimethylation (H3K27me3) and prostate cancer: relationship with clinicopathological parameters. BMC Cancer, 2014, 14, 994.	2.6	43
34	Comparative Effects of Soy Phytoestrogens and 17β-Estradiol on DNA Methylation of a Panel of 24 Genes in Prostate Cancer Cell Lines. Nutrition and Cancer, 2014, 66, 474-482.	2.0	16
35	Histone lysine trimethylation or acetylation can be modulated by phytoestrogen, estrogen or anti-HDAC in breast cancer cell lines. Epigenomics, 2013, 5, 51-63.	2.1	79
36	Gene Panel Model Predictive of Outcome in Patients with Prostate Cancer. OMICS A Journal of Integrative Biology, 2013, 17, 407-413.	2.0	3

#	Article	IF	CITATIONS
37	Breast cancer: mechanisms involved in action of phytoestrogens and epigenetic changes. In Vivo, 2013, 27, 1-9.	1.3	14
38	Genistein and daidzein: different molecular effects on prostate cancer. Anticancer Research, 2013, 33, 39-44.	1.1	56
39	DNA methylation and soy phytoestrogens: quantitative study in DU-145 and PC-3 human prostate cancer cell lines. Epigenomics, 2011, 3, 795-803.	2.1	61
40	BRCA1, BRCA2, AR and IGF-I expression in prostate cancer: Correlation between RT-qPCR and immunohistochemical detection. Oncology Reports, 2011, 26, 695-702.	2.6	15
41	Methylation analysis of BRCA1, RASSF1, GSTP1 and EPHB2 promoters in prostate biopsies according to different degrees of malignancy. In Vivo, 2009, 23, 387-91.	1.3	11