
Gun-hee Moon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8584622/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding (photo)electrocatalysis for the conversion of methane to valuable chemicals through partial oxidation processes. Journal of Materials Chemistry A, 2022, 10, 19107-19128.	10.3	9
2	<i>In situ</i> total scattering experiments of nucleation and crystallisation of tantalum-based oxides: from highly dilute solutions <i>via</i> cluster formation to nanoparticles. Nanoscale, 2021, 13, 150-162.	5.6	7
3	Crystal phase-dependent generation of mobile OH radicals on TiO2: Revisiting the photocatalytic oxidation mechanism of anatase and rutile. Applied Catalysis B: Environmental, 2021, 286, 119905.	20.2	61
4	A Highlyâ€Efficient Oxygen Evolution Electrocatalyst Derived from a Metalâ€Organic Framework and Ketjenblack Carbon Material. ChemPlusChem, 2021, 86, 1106-1115.	2.8	10
5	Biomimetic photocatalysts for the conversion of aqueous- and gas-phase nitrogen species to molecular nitrogen <i>via</i> denitrification and ammonia oxidation. Journal of Materials Chemistry A, 2021, 9, 19179-19205.	10.3	6
6	Preparation of Practical Highâ€Performance Electrodes for Acidic and Alkaline Media Water Electrolysis. ChemSusChem, 2021, , .	6.8	6
7	How g-C ₃ N ₄ Works and Is Different from TiO ₂ as an Environmental Photocatalyst: Mechanistic View. Environmental Science & Technology, 2020, 54, 497-506.	10.0	76
8	Spontaneous oxidation of arsenite on platinized TiO2 through activating molecular oxygen under ambient aqueous condition. Applied Catalysis B: Environmental, 2020, 260, 118146.	20.2	16
9	Dual Role of Silver Moieties Coupled with Ordered Mesoporous Cobalt Oxide towards Electrocatalytic Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 16544-16552.	13.8	64
10	Dual Role of Silver Moieties Coupled with Ordered Mesoporous Cobalt Oxide towards Electrocatalytic Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 16687.	2.0	23
11	Ag(I) ions working as a hole-transfer mediator in photoelectrocatalytic water oxidation on WO3 film. Nature Communications, 2020, 11, 967.	12.8	66
12	Nafion-Assisted Noncovalent Assembly of Molecular Sensitizers and Catalysts for Sustained Photoreduction of CO ₂ to CO. ACS Sustainable Chemistry and Engineering, 2020, 8, 3709-3717.	6.7	10
13	Nitrogen-Doped Mesostructured Carbon-Supported Metallic Cobalt Nanoparticles for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 6672-6680.	5.1	28
14	Highly Active Cobaltâ€Based Electrocatalysts with Facile Incorporation of Dopants for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 3491-3495.	13.8	67
15	Highly Active Cobaltâ€Based Electrocatalysts with Facile Incorporation of Dopants for the Oxygen Evolution Reaction. Angewandte Chemie, 2019, 131, 3529-3533.	2.0	36
16	Optimizing Ni–Fe Oxide Electrocatalysts for Oxygen Evolution Reaction by Using Hard Templating as a Toolbox. ACS Applied Energy Materials, 2019, 2, 1199-1209.	5.1	71
17	Minireview: Selective production of hydrogen peroxide as a clean oxidant over structurally tailored carbon nitride photocatalysts. Catalysis Today, 2019, 335, 55-64.	4.4	72
18	Activation of peroxymonosulfate on visible light irradiated TiO2 via a charge transfer complex path. Chemical Engineering Journal, 2018, 346, 249-257.	12.7	85

Gun-hee Moon

#	Article	IF	CITATIONS
19	Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light. Journal of Catalysis, 2018, 357, 51-58.	6.2	89
20	Oxidation of organic pollutants by peroxymonosulfate activated with low-temperature-modified nanodiamonds: Understanding the reaction kinetics and mechanism. Applied Catalysis B: Environmental, 2018, 237, 432-441.	20.2	161
21	Oxalate-TiO2 complex-mediated oxidation of pharmaceutical pollutants through ligand-to-metal charge transfer under visible light. Chemical Engineering Journal, 2018, 343, 689-698.	12.7	28
22	Structural Engineering of 3D Carbon Materials from Transition Metal Ion-Exchanged Y Zeolite Templates. Chemistry of Materials, 2018, 30, 3779-3788.	6.7	28
23	Reactor Design and Kinetic Study on Adsorption/Desorption of CO and Cl ₂ for Industrial Phosgene Synthesis. Chemie-Ingenieur-Technik, 2018, 90, 1513-1519.	0.8	10
24	Visible light-induced degradation of sulfa drugs on pure TiO 2 through ligand-to-metal charge transfer. Separation and Purification Technology, 2018, 203, 242-250.	7.9	19
25	Eco-Friendly Photochemical Production of H ₂ O ₂ through O ₂ Reduction over Carbon Nitride Frameworks Incorporated with Multiple Heteroelements. ACS Catalysis, 2017, 7, 2886-2895.	11.2	287
26	TiO2 complexed with dopamine-derived polymers and the visible light photocatalytic activities for water pollutants. Journal of Catalysis, 2017, 346, 92-100.	6.2	71
27	Synergistic combination of bandgap-modified carbon nitride and WO3 for visible light-induced oxidation of arsenite accelerated by in-situ Fenton reaction. Applied Catalysis B: Environmental, 2017, 218, 819-824.	20.2	57
28	Ultra-efficient and durable photoelectrochemical water oxidation using elaborately designed hematite nanorod arrays. Nano Energy, 2017, 39, 211-218.	16.0	171
29	Robust Co-catalytic Performance of Nanodiamonds Loaded on WO ₃ for the Decomposition of Volatile Organic Compounds under Visible Light. ACS Catalysis, 2016, 6, 8350-8360.	11.2	98
30	Selective dual-purpose photocatalysis for simultaneous H ₂ evolution and mineralization of organic compounds enabled by a Cr ₂ O ₃ barrier layer coated on Rh/SrTiO ₃ . Chemical Communications, 2016, 52, 9636-9639.	4.1	39
31	Boosting up the Low Catalytic Activity of Silver for H ₂ Production on Ag/TiO ₂ Photocatalyst: Thiocyanate as a Selective Modifier. ACS Catalysis, 2016, 6, 821-828.	11.2	153
32	Photoinduced charge transfer processes in solar photocatalysis based on modified TiO ₂ . Energy and Environmental Science, 2016, 9, 411-433.	30.8	494
33	CHAPTER 5. Photoexcitation in Pure and Modified Semiconductor Photocatalysts. RSC Energy and Environment Series, 2016, , 110-128.	0.5	1
34	Photocatalytic oxidation mechanism of arsenite on tungsten trioxide under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 311, 35-40.	3.9	28
35	Molecular‣evel Understanding of the Photocatalytic Activity Difference between Anatase and Rutile Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 14036-14041.	13.8	143
36	Platinum-like Behavior of Reduced Graphene Oxide as a Cocatalyst on TiO ₂ for the Efficient Photocatalytic Oxidation of Arsenite. Environmental Science and Technology Letters, 2014, 1, 185-190.	8.7	114

Gun-hee Moon

#	Article	IF	CITATIONS
37	Solar production of H ₂ O ₂ on reduced graphene oxide–TiO ₂ hybrid photocatalysts consisting of earth-abundant elements only. Energy and Environmental Science, 2014, 7, 4023-4028.	30.8	311
38	Catalytic templating approaches for three-dimensional hollow carbon/graphene oxide nano-architectures. Nanoscale, 2013, 5, 6291.	5.6	31
39	Chemical-free growth of metal nanoparticles on graphene oxide sheets under visible light irradiation. RSC Advances, 2012, 2, 2205.	3.6	31
40	Solar Photoconversion Using Graphene/TiO ₂ Composites: Nanographene Shell on TiO ₂ Core versus TiO ₂ Nanoparticles on Graphene Sheet. Journal of Physical Chemistry C, 2012, 116, 1535-1543.	3.1	292
41	Carbon dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization using soft drink. Colloid and Polymer Science, 2012, 290, 1567-1573.	2.1	17
42	Photocatalytic Synthesis of Pure and Waterâ€Dispersible Graphene Monosheets. Chemistry - A European Journal, 2012, 18, 2762-2767.	3.3	27
43	Photochemical loading of metal nanoparticles on reduced graphene oxide sheets using phosphotungstate. Carbon, 2011, 49, 3454-3462.	10.3	97