Nadezhda S Sukhinina

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8584587/nadezhda-s-sukhinina-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

17	223	7	14
papers	citations	h-index	g-index
18	247	1.9	2.76
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
17	Effect of Heat Treatment on the Physical Properties and Morphology of Hollow Submicron SiO2 Particles. <i>Journal of Surface Investigation</i> , 2021 , 15, 1174-1180	0.5	O
16	Investigation of the Electrochemical Properties of LithiumBulfur Cells with Sulfur Electrodes Based on Carbon Inverted Opals. <i>IFMBE Proceedings</i> , 2020 , 193-197	0.2	1
15	Growth of mixed K2NixCo(1☑)(SO4)2 □6H2O crystals for large supercooling without spontaneous crystallization in solution. <i>Materials Research Express</i> , 2020 , 7, 016202	1.7	3
14	Effect of Heat Treatment on Water Vapor Adsorption by Opal Structures and Their Effective Refractive Index. <i>Inorganic Materials</i> , 2019 , 55, 143-148	0.9	2
13	Synthesis of Monodisperse Silica Nanoparticles via Heterogeneous Tetraethoxysilane Hydrolysis Using L-Arginine as a Catalyst. <i>Inorganic Materials</i> , 2018 , 54, 156-162	0.9	7
12	Developing of Standard Reference Materials of the Electrokinetic (Zeta) Potential of Nanoparticles. <i>Nanotechnologies in Russia</i> , 2018 , 13, 90-95	0.6	3
11	A novel way of synthesising C8 cubic carbon nanocrystals. <i>CrystEngComm</i> , 2018 , 20, 6133-6135	3.3	O
10	Synthesis and Modification of Carbon Inverse Opal Nanostructres Based on Anthracene and Their Electrochemical Characteristics. <i>Nanotechnologies in Russia</i> , 2017 , 12, 635-642	0.6	3
9	Adsorption of lanthanides and scandium ions by silica sol-gel material doped with novel bifunctional ionic liquid, trioctylmethylammonium 1-phenyl-3-methyl-4-benzoyl-5-onate. <i>Journal of Environmental Chemical Engineering</i> , 2016 , 4, 3788-3796	6.8	22
8	Photonic crystal microspheres. <i>Optical Materials</i> , 2015 , 49, 208-212	3.3	9
7	C-IOP/NiO/Ni7S6composite with the inverse opal lattice as an electrode for supercapacitors 2015 ,		1
6	A novel sorbent for lanthanide adsorption based on tetraoctyldiglycolamide, modified carbon inverse opals. <i>RSC Advances</i> , 2015 , 5, 529-535	3.7	16
5	Inverse opal based on a polymer filler and transformation of its optical characteristics. <i>Physics of the Solid State</i> , 2014 , 56, 746-750	0.8	1
4	Synthesis of polymer - based inverted opal and transformation of its optical properties. <i>Advances in Nano Research</i> , 2014 , 2, 69-76		1
3	DIRECT OBSERVATION OF THE SHELL-LIKE STRUCTURE OF SiO2 PARTICLES SYNTHESIZED BY THE MULTISTAGE STBER METHOD. <i>Nano</i> , 2013 , 08, 1350036	1.1	10
2	Mechanism of formation and nanostructure of StBer silica particles. <i>Nanotechnology</i> , 2011 , 22, 275718	3.4	117
1	Colloidal particles of silicon dioxide for the formation of opal-like structures. <i>Physics of the Solid State</i> , 2011 , 53, 1135-1139	0.8	27