
Antonio Rodriguez-Sinovas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8584512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defective dimerization of FoF1â€ATP synthase secondary to glycation favors mitochondrial energy deficiency in cardiomyocytes during aging. Aging Cell, 2022, 21, e13564.	3.0	8
2	Human Lysyl Oxidase Over-Expression Enhances Baseline Cardiac Oxidative Stress but Does Not Aggravate ROS Generation or Infarct Size Following Myocardial Ischemia-Reperfusion. Antioxidants, 2022, 11, 75.	2.2	3
3	Aging Impairs Reverse Remodeling and Recovery of Ventricular Function after Isoproterenol-Induced Cardiomyopathy. International Journal of Molecular Sciences, 2022, 23, 174.	1.8	5
4	Effect of COMBinAtion therapy with remote ischemic conditioning and exenatide on the Myocardial Infarct size: a two-by-two factorial randomized trial (COMBAT-MI). Basic Research in Cardiology, 2021, 116, 4.	2.5	25
5	Angiotensin II-induced cardiomyocyte hypertrophy: A complex response dependent on intertwined pathways. Revista Portuguesa De Cardiologia (English Edition), 2021, 40, 201-203.	0.2	0
6	Angiotensin II-induced cardiomyocyte hypertrophy: A complex response dependent on intertwined pathways. Revista Portuguesa De Cardiologia, 2021, 40, 201-203.	0.2	0
7	Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. International Journal of Molecular Sciences, 2021, 22, 4413.	1.8	48
8	Citric Acid Cycle Metabolites Predict Infarct Size in Pigs Submitted to Transient Coronary Artery Occlusion and Treated with Succinate Dehydrogenase Inhibitors or Remote Ischemic Perconditioning. International Journal of Molecular Sciences, 2021, 22, 4151.	1.8	10
9	Cellular crosstalk in cardioprotection: Where and when do reactive oxygen species play a role?. Free Radical Biology and Medicine, 2021, 169, 397-409.	1.3	16
10	Implications of Iron Deficiency in STEMI Patients and in a Murine Model of Myocardial Infarction. JACC Basic To Translational Science, 2021, 6, 567-580.	1.9	14
11	NR4A3: A Key Nuclear Receptor in Vascular Biology, Cardiovascular Remodeling, and Beyond. International Journal of Molecular Sciences, 2021, 22, 11371.	1.8	15
12	1H NMR serum metabolomic profiling of patients at risk of cardiovascular diseases performing stress test. Scientific Reports, 2020, 10, 17838.	1.6	9
13	Connexin 43 Deficiency Is Associated with Reduced Myocardial Scar Size and Attenuated TGFβ1 Signaling after Transient Coronary Occlusion in Conditional Knock-Out Mice. Biomolecules, 2020, 10, 651.	1.8	8
14	Degradation of GRK2 and AKT is an early and detrimental event in myocardial ischemia/reperfusion. EBioMedicine, 2019, 48, 605-618.	2.7	20
15	Opposite Effects of Moderate and Extreme Cx43 Deficiency in Conditional Cx43-Deficient Mice on Angiotensin II-Induced Cardiac Fibrosis. Cells, 2019, 8, 1299.	1.8	12
16	CIBER-CLAP (CIBERCV Cardioprotection Large Animal Platform): A multicenter preclinical network for testing reproducibility in cardiovascular interventions. Scientific Reports, 2019, 9, 20290.	1.6	15
17	Ischemic Postconditioning Reduces Reperfusion Arrhythmias by Adenosine Receptors and Protein Kinase C Activation but Is Independent of KATP Channels or Connexin 43. International Journal of Molecular Sciences, 2019, 20, 5927.	1.8	8
18	Selective Inhibition of Succinate Dehydrogenase in Reperfused Myocardium with Intracoronary Malonate Reduces Infarct Size. Scientific Reports, 2018, 8, 2442.	1.6	62

#	Article	IF	CITATIONS
19	Mitochondrial Cx43, an important component of cardiac preconditioning. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 174-181.	1.4	37
20	Remote ischemic conditioning provides humoural cross-species cardioprotection through glycine receptor activation. Cardiovascular Research, 2017, 113, 52-60.	1.8	18
21	Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin Il–induced hypertrophy. FASEB Journal, 2017, 31, 3787-3799.	0.2	41
22	Early regional wall distension is strongly associated with vulnerability to ventricular fibrillation but not arrhythmia triggers following coronary occlusion inÂvivo. Progress in Biophysics and Molecular Biology, 2017, 130, 387-393.	1.4	8
23	Reply: Glycine as a key element of remote ischaemic conditioning cardioprotective signalling. Cardiovascular Research, 2017, 113, 562-563.	1.8	1
24	Lysyl oxidase over-expression aggravates angiotensin II-induced hypertrophy. Atherosclerosis, 2017, 263, e69.	0.4	0
25	Letter in response to "the role of succinate and ROS in reperfusion injury – A critical appraisal―by Andrienko et al Journal of Molecular and Cellular Cardiology, 2017, 112, 131.	0.9	0
26	Cardiotoxic Effects of Short-Term Doxorubicin Administration: Involvement of Connexin 43 in Calcium Impairment. International Journal of Molecular Sciences, 2017, 18, 2121.	1.8	32
27	Efectos aditivos de la exenatida, la glucosa-insulina-potasio y el condicionamiento isquémico a distancia frente a las arritmias ventriculares de la reperfusión en cerdos. Revista Espanola De Cardiologia, 2016, 69, 620-622.	0.6	4
28	Additive Effects of Exenatide, Glucose-insulin-potassium, and Remote Ischemic Conditioning Against Reperfusion Ventricular Arrhythmias in Pigs. Revista Espanola De Cardiologia (English Ed), 2016, 69, 620-622.	0.4	4
29	Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. Cardiovascular Research, 2016, 109, 374-384.	1.8	114
30	NOR-1 modulates the inflammatory response of vascular smooth muscle cells by preventing NFκB activation. Journal of Molecular and Cellular Cardiology, 2015, 80, 34-44.	0.9	39
31	Obesity induced by high fat diet attenuates postinfarct myocardial remodeling and dysfunction in adult B6D2F1 mice. Journal of Molecular and Cellular Cardiology, 2015, 84, 154-161.	0.9	25
32	Combination therapy with remote ischaemic conditioning and insulin or exenatide enhances infarct size limitation in pigs. Cardiovascular Research, 2015, 107, 246-254.	1.8	49
33	Microtubule stabilization with paclitaxel does not protect against infarction in isolated rat hearts. Experimental Physiology, 2015, 100, 23-34.	0.9	7
34	Effects of the Selective Stretch-Activated Channel Blocker GsMtx4 on Stretch-Induced Changes in Refractoriness in Isolated Rat Hearts and on Ventricular Premature Beats and Arrhythmias after Coronary Occlusion in Swine. PLoS ONE, 2015, 10, e0125753.	1.1	12
35	Connexin 43 phosphorylation in subsarcolemmal mitochondria: a general cardioprotective signal targeted by fibroblast growth factor-2?. Cardiovascular Research, 2014, 103, 1-2.	1.8	6
36	Defective sarcoplasmic reticulum–mitochondria calcium exchange in aged mouse myocardium. Cell Death and Disease, 2014, 5, e1573-e1573.	2.7	85

#	Article	IF	CITATIONS
37	Single Intracoronary Injection of Encapsulated Antagomirâ€92a Promotes Angiogenesis and Prevents Adverse Infarct Remodeling. Journal of the American Heart Association, 2014, 3, e000946.	1.6	76
38	Ischemic preconditioning protects cardiomyocyte mitochondria through mechanisms independent of cytosol. Journal of Molecular and Cellular Cardiology, 2014, 68, 79-88.	0.9	58
39	Protection Against Myocardial Ischemia-reperfusion Injury in Clinical Practice. Revista Espanola De Cardiologia (English Ed), 2014, 67, 394-404.	0.4	34
40	Activation of RISK and SAFE pathways is not involved in the effects of Cx43 deficiency on tolerance to ischemia–reperfusion injury and preconditioning protection. Basic Research in Cardiology, 2013, 108, 351.	2.5	37
41	Calcium-mediated cell death during myocardial reperfusion. Cardiovascular Research, 2012, 94, 168-180.	1.8	243
42	Connexin and pannexin as modulators of myocardial injury. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1962-1970.	1.4	20
43	Contribution of Delayed Intracellular pH Recovery to Ischemic Postconditioning Protection. Antioxidants and Redox Signaling, 2011, 14, 923-939.	2.5	58
44	Effects of a reduction in the number of gap junction channels or in their conductance on ischemia-reperfusion arrhythmias in isolated mouse hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H2442-H2453.	1.5	25
45	Effects of substitution of Cx43 by Cx32 on myocardial energy metabolism, tolerance to ischaemia and preconditioning protection. Journal of Physiology, 2010, 588, 1139-1151.	1.3	47
46	Connexin43 in cardiomyocyte mitochondria contributes to mitochondrial potassium uptake. Cardiovascular Research, 2009, 83, 747-756.	1.8	124
47	Cx43 phosphorylation and cardioprotection. Cardiovascular Research, 2009, 83, 613-614.	1.8	7
48	Intracoronary acid infusion as an alternative to ischemic postconditioning in pigs. Basic Research in Cardiology, 2009, 104, 761-771.	2.5	43
49	Replacement of connexin 43 by connexin 32 in a knockâ€in mice model attenuates aortic endotheliumâ€derived hyperpolarizing factorâ€mediated relaxation. Experimental Physiology, 2009, 94, 1088-1097.	0.9	11
50	Acidic reoxygenation protects against endothelial dysfunction in rat aortic rings submitted to simulated ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H2409-H2416.	1.5	14
51	Lysyl Oxidase as a Potential Therapeutic Target. Drug News and Perspectives, 2008, 21, 218.	1.9	82
52	Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischaemia-reperfusion injury. Cardiovascular Research, 2007, 77, 325-333.	1.8	112
53	Effect of acidic reperfusion on prolongation of intracellular acidosis and myocardial salvage. Cardiovascular Research, 2007, 77, 782-790.	1.8	87
54	Identification of CX43 in mitochondrial membranes by mass spectrometry. Journal of Molecular and Cellular Cardiology, 2007, 42, S120.	0.9	0

#	Article	IF	CITATIONS
55	Mitochondrial connexin 43 hemichannels. Journal of Molecular and Cellular Cardiology, 2007, 42, S120.	0.9	1
56	The modulatory effects of connexin 43 on cell death/survival beyond cell coupling. Progress in Biophysics and Molecular Biology, 2007, 94, 219-232.	1.4	123
57	Reperfusion injury as a therapeutic challenge in patients with acute myocardial infarction. Heart Failure Reviews, 2007, 12, 207-216.	1.7	75
58	1H NMR-based metabolomic identification of at-risk areas after myocardial infarction in swine. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2007, 20, 265-271.	1.1	31
59	Intracoronary infusion of Gd3+ into ischemic region does not suppress phase Ib ventricular arrhythmias after coronary occlusion in swine. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2344-H2350.	1.5	13
60	Protective effect of gap junction uncouplers given during hypoxia against reoxygenation injury in isolated rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H648-H656.	1.5	32
61	The end-effectors of preconditioning protection against myocardial cell death secondary to ischemia–reperfusion. Cardiovascular Research, 2006, 70, 274-285.	1.8	54
62	Translocation of Connexin 43 to the Inner Mitochondrial Membrane of Cardiomyocytes Through the Heat Shock Protein 90–Dependent TOM Pathway and Its Importance for Cardioprotection. Circulation Research, 2006, 99, 93-101.	2.0	221
63	Effect of sarcolemmal rupture on myocardial electrical impedance during oxygen deprivation. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1396-H1403.	1.5	15
64	Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovascular Research, 2005, 67, 234-244.	1.8	270
65	Myocardial connexin 43: gap junction-dependent and gap junction-independent effects on ischemia/reperfusion injury. , 2005, , 31-32.		1
66	Gap junction-mediated spread of cell injury and death during myocardial ischemia–reperfusion. Cardiovascular Research, 2004, 61, 386-401.	1.8	157
67	Enhanced effect of gap junction uncouplers on macroscopic electrical properties of reperfused myocardium. Journal of Physiology, 2004, 559, 245-257.	1.3	45
68	Glycine protects cardiomyocytes against lethal reoxygenation injury by inhibiting mitochondrial permeability transition. Journal of Physiology, 2004, 558, 873-882.	1.3	66
69	Pre-treatment with the Na/H exchange inhibitor cariporide delays cell-to-cell electrical uncoupling during myocardial ischemia. Cardiovascular Research, 2003, 58, 109-117.	1.8	24
70	Coronary smooth muscle reactivity to muscarinic stimulation after ischemia-reperfusion in porcine myocardial infarction. Journal of Applied Physiology, 2003, 95, 81-88.	1.2	7
71	Protection afforded by ischemic preconditioning is not mediated by effects on cell-to-cell electrical coupling during myocardial ischemia-reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1909-H1916.	1.5	53
72	Gap junction-mediated intercellular communication in ischemic preconditioning. Cardiovascular Research, 2002, 55, 456-465.	1.8	61

#	Article	IF	CITATIONS
73	Percutaneous Electrocatheter Technique for On-Line Detection of Healed Transmural Myocardial Infarction. PACE - Pacing and Clinical Electrophysiology, 2000, 23, 1283-1287.	0.5	28
74	Neurally mediated depressor hemodynamic response induced by intracoronary catheter balloon inflation in pigs. Cardiovascular Research, 2000, 46, 198-206.	1.8	7
75	Cardiovascular reflex responses induced by epicardial chemoreceptor stimulation. Cardiovascular Research, 2000, 45, 163-171.	1.8	9
76	In Vivo and In Situ Ischemic Tissue Characterization Using Electrical Impedance Spectroscopya. Annals of the New York Academy of Sciences, 1999, 873, 51-58.	1.8	86
77	Passive transmission of ischemic ST segment changes in low electrical resistance myocardial infarct scar in the pig. Cardiovascular Research, 1998, 40, 103-112.	1.8	42
78	Lack of evidence of M-cells in porcine left ventricular myocardium. Cardiovascular Research, 1997, 33, 307-313.	1.8	77
79	Central and no-mediated mechanisms are involved in the inhibitory effects of CCK on the chicken cecorectal area. Life Sciences, 1996, 58, 1869-1882.	2.0	2
80	L-364,718 AND L-365,260, two CCK antagonists, have no affinity for central benzodiazepine binding sites in chickens. Life Sciences, 1996, 59, 1211-1216.	2.0	0
81	Central and peripheral cholecystokinin receptors in chickens differ from those in mammals. Regulatory Peptides, 1995, 60, 47-54.	1.9	10
82	Effects of cholecystokinin on chicken cecal motility: Mechanisms involved. Life Sciences, 1995, 56, 601-610.	2.0	6
83	Effect of cholecystokinin receptor antagonists on voluntary food intake in chickens. Applied Animal Behaviour Science, 1994, 40, 319-323.	0.8	9
84	Cecocolonic motility in the chicken. Effects of cholecstokinin. Life Sciences, 1994, 55, 1743-1755.	2.0	7