Federica Villa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8584306/publications.pdf

Version: 2024-02-01

		172457	276875
71	2,012	29	41
papers	citations	h-index	g-index
70	70	70	2.422
73	73	73	2423
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biofilm Formation in Food Processing Environments is Still Poorly Understood and Controlled. Food Engineering Reviews, 2014, 6, 29-42.	5.9	122
2	Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells. Bioelectrochemistry, 2017, 116, 39-51.	4.6	101
3	Metal toxicity in municipal wastewater activated sludge investigated by multivariate analysis and in situ hybridization. Water Research, 2006, 40, 99-106.	11.3	82
4	Feasibility of Removing Surface Deposits on Stone Using Biological and Chemical Remediation Methods. Microbial Ecology, 2010, 60, 1-14.	2.8	82
5	The Control of Cultural Heritage Microbial Deterioration. Microorganisms, 2020, 8, 1542.	3.6	72
6	Fungal Biofilms: Targets for the Development of Novel Strategies in Plant Disease Management. Frontiers in Microbiology, 2017, 8, 654.	3.5	56
7	Degradation of nitrocellulose-based paint by Desulfovibrio desulfuricans ATCC 13541. Biodegradation, 2012, 23, 705-716.	3.0	48
8	Hindering biofilm formation with zosteric acid. Biofouling, 2010, 26, 739-752.	2.2	47
9	Color measurements as a reliable method for estimating chlorophyll degradation to phaeopigments. Biodegradation, 2011, 22, 763-771.	3.0	46
10	Effects of sublethal doses of silver nanoparticles on <i>Bacillus subtilis</i> planktonic and sessile cells. Journal of Applied Microbiology, 2015, 118, 1103-1115.	3.1	46
11	Effects of chronic sub-lethal oxidative stress on biofilm formation by <i>Azotobacter vinelandii </i> Biofouling, 2012, 28, 823-833.	2.2	45
12	Unravelling the Structural and Molecular Basis Responsible for the Anti-Biofilm Activity of Zosteric Acid. PLoS ONE, 2015, 10, e0131519.	2.5	45
13	Efficacy of Zosteric Acid Sodium Salt on the Yeast Biofilm Model Candida albicans. Microbial Ecology, 2011, 62, 584-598.	2.8	44
14	Development of a Laboratory Model of a Phototroph-Heterotroph Mixed-Species Biofilm at the Stone/Air Interface. Frontiers in Microbiology, 2015, 6, 1251.	3.5	42
15	Comparing the bioremoval of black crusts on colored artistic lithotypes of the Cathedral of Florence with chemical and laser treatment. International Biodeterioration and Biodegradation, 2011, 65, 832-839.	3.9	41
16	Plant-derived bioactive compounds at sub-lethal concentrations: towards smart biocide-free antibiofilm strategies. Phytochemistry Reviews, 2013, 12, 245-254.	6.5	40
17	Detection and Elimination of Cyanobacteria from Frescoes: The Case of the St. Brizio Chapel (Orvieto) Tj ETQq1 1	1 0,78431 2.8	4 rgBT /Overl
18	Molecular Studies of Microbial Community Structure on Stained Pages of Leonardo da Vinci's Atlantic Codex. Microbial Ecology, 2011, 61, 214-222.	2.8	39

#	Article	IF	CITATIONS
19	Subaerial Biofilms on Outdoor Stone Monuments: Changing the Perspective Toward an Ecological Framework. BioScience, 2016, 66, 285-294.	4.9	38
20	Biofilm colonization of metamorphic lithotypes of a renaissance cathedral exposed to urban atmosphere. Science of the Total Environment, 2018, 639, 1480-1490.	8.0	38
21	Effects of Photoactivated Titanium Dioxide Nanopowders and Coating on Planktonic and Biofilm Growth of <i>Pseudomonas aeruginosa</i>). Photochemistry and Photobiology, 2011, 87, 1387-1394.	2.5	35
22	Microbial Deterioration of Artistic Tiles from the Façade of the Grande Albergo Ausonia & Ecology, 2011, 62, 287-298.	2.8	35
23	Zinc oxide nanoparticles hinder fungal biofilm development in an ancient Egyptian tomb. International Biodeterioration and Biodegradation, 2017, 122, 92-99.	3.9	35
24	Altered expression level of <i>Escherichia coli</i> proteins in response to treatment with the antifouling agent zosteric acid sodium salt. Environmental Microbiology, 2012, 14, 1753-1761.	3.8	33
25	Impacts of dietary silver nanoparticles and probiotic administration on the microbiota of an in-vitro gut model. Environmental Pollution, 2019, 245, 754-763.	7.5	33
26	Importance of subaerial biofilms and airborne microflora in the deterioration of stonework: a molecular study. Biofouling, 2012, 28, 1093-1106.	2.2	32
27	The response of <i>Escherichia coli</i> biofilm to salicylic acid. Biofouling, 2017, 33, 235-251.	2.2	32
28	Shifts of microbial community structure during anaerobic digestion of agroâ€industrial energetic crops and food industry byproducts. Journal of Chemical Technology and Biotechnology, 2012, 87, 1302-1311.	3.2	30
29	Cyanobacteria cause black staining of the National Museum of the American Indian Building, Washington, DC, USA. Biofouling, 2012, 28, 257-266.	2.2	29
30	A simple and reliable methodology to detect egg white in art samples. Journal of Biosciences, 2013, 38, 397-408.	1.1	29
31	Biological invasion in the indoor environment: the spread of EurotiumÂhalophilicum on library materials. International Biodeterioration and Biodegradation, 2017, 118, 34-44.	3.9	29
32	Bioelectrochemical Nitrogen fixation (e-BNF): Electro-stimulation of enriched biofilm communities drives autotrophic nitrogen and carbon fixation. Bioelectrochemistry, 2019, 125, 105-115.	4.6	28
33	Assessing the microbiological risk to stored sixteenth century parchment manuscripts: a holistic approach based on molecular and environmental studies. Biofouling, 2014, 30, 299-311.	2.2	24
34	Recent progress in bio-inspired biofilm-resistant polymeric surfaces. Critical Reviews in Microbiology, 2018, 44, 633-652.	6.1	24
35	Air-breathing bio-cathodes based on electro-active biochar from pyrolysis of Giant Cane stalks. International Journal of Hydrogen Energy, 2019, 44, 4496-4507.	7.1	23
36	Surface colour: An overlooked aspect in the study of cyanobacterial biofilm formation. Science of the Total Environment, 2019, 659, 342-353.	8.0	23

#	Article	IF	Citations
37	Sub-lethal Activity of Small Molecules from Natural Sources and their Synthetic Derivatives Against Biofilm Forming Nosocomial Pathogens. Current Topics in Medicinal Chemistry, 2013, 13, 3184-3204.	2.1	22
38	The Effect of Copper on The Structure of the Ammonia-Oxidizing Microbial Community in an Activated Sludge Wastewater Treatment Plant. Microbial Ecology, 2009, 57, 215-220.	2.8	20
39	Rapid evaluation of three biocide treatments against the cyanobacterium Nostoc sp. PCC 9104 by color changes. Annals of Microbiology, 2015, 65, 1153-1158.	2.6	20
40	Dynamics of bacterial communities and substrate conversion during olive-mill waste dark fermentation: Prediction of the metabolic routes for hydrogen production. Bioresource Technology, 2021, 319, 124157.	9.6	20
41	RNA-based molecular survey of biodiversity of limestone tombstone microbiota in response to atmospheric sulphur pollution. Letters in Applied Microbiology, 2015, 60, 92-102.	2.2	19
42	Evaluation of Zosteric Acid for Mitigating Biofilm Formation of Pseudomonas putida Isolated from a Membrane Bioreactor System. International Journal of Molecular Sciences, 2014, 15, 9497-9518.	4.1	18
43	α-Chymotrypsin Immobilized on a Low-Density Polyethylene Surface Successfully Weakens Escherichia coli Biofilm Formation. International Journal of Molecular Sciences, 2018, 19, 4003.	4.1	18
44	Effects of Sub-lethal Concentrations of Silver Nanoparticles on a Simulated Intestinal Prokaryotic–Eukaryotic Interface. Frontiers in Microbiology, 2017, 8, 2698.	3.5	18
45	Effects of sublethal concentrations of silver nanoparticles on <i>Escherichia coli</i> and <i>Bacillus subtilis</i> under aerobic and anaerobic conditions. Biointerphases, 2016, 11, 04B308.	1.6	17
46	The Ecology of Subaerial Biofilms in Dry and Inhospitable Terrestrial Environments. Microorganisms, 2019, 7, 380.	3.6	17
47	Aesthetic Alteration of Marble Surfaces Caused by Biofilm Formation: Effects of Chemical Cleaning. Coatings, 2020, 10, 122.	2.6	17
48	Permeabilization method for (i) in-situ (i) investigation of fungal conidia on surfaces. Letters in Applied Microbiology, 2009, 48, 234-240.	2.2	16
49	Sub-lethal concentrations of (i) Muscari comosum (i) bulb extract suppress adhesion and induce detachment of sessile yeast cells. Biofouling, 2012, 28, 1107-1117.	2.2	15
50	Coating polypropylene surfaces with protease weakens the adhesion and increases the dispersion of Candida albicans cells. Biotechnology Letters, 2017, 39, 423-428.	2.2	15
51	Hindering the formation and promoting the dispersion of medical biofilms: non-lethal effects of seagrass extracts. BMC Complementary and Alternative Medicine, 2018, 18, 168.	3.7	15
52	Characterization of a biofilm and the pattern outlined by its growth on a granite-built cloister in the Monastery of San Martiño Pinario (Santiago de Compostela, NW Spain). International Biodeterioration and Biodegradation, 2020, 147, 104871.	3.9	14
53	N-vanillylnonanamide tested as a non-toxic antifoulant, applied to surfaces in a polyurethane coating. Biotechnology Letters, 2009, 31, 1407-1413.	2.2	12
54	Sub-lethal concentrations of Perilla frutescens essential oils affect phytopathogenic fungal biofilms. Journal of Environmental Management, 2019, 245, 264-272.	7.8	12

#	Article	IF	Citations
55	Interactions of microorganisms and synthetic polymers in cultural heritage conservation. International Biodeterioration and Biodegradation, 2021, 163, 105282.	3.9	12
56	Immobilized Hydrolytic Enzymes Exhibit Antibiofilm Activity Against Escherichia coli at Sub-Lethal Concentrations. Current Microbiology, 2015, 71, 106-114.	2.2	10
57	Zosteric acid and salicylic acid bound to a low density polyethylene surface successfully control bacterial biofilm formation. Biofouling, 2018, 34, 440-452.	2.2	10
58	Age, palaeoenvironment, and preservation of prehistoric petroglyphs on a boulder in the oasis of Salut (northern Sultanate of Oman). Quaternary International, 2021, 572, 106-119.	1.5	10
59	The Sustainability of Rock Art: Preservation and Research. Sustainability, 2022, 14, 6305.	3.2	10
60	Non-Lethal Effects of N-Acetylcysteine on Xylella fastidiosa Strain De Donno Biofilm Formation and Detachment. Microorganisms, 2019, 7, 656.	3.6	8
61	Effects of the Quinone Oxidoreductase WrbA on Escherichia coli Biofilm Formation and Oxidative Stress. Antioxidants, 2021, 10, 919.	5.1	8
62	Promoting Beneficial and Inhibiting Undesirable Biofilm Formation with Mangrove Extracts. International Journal of Molecular Sciences, 2019, 20, 3549.	4.1	7
63	Biochemical and molecular changes of the zosteric acid-treated Escherichia coli biofilm on a mineral surface. Annals of Microbiology, 2021, 71, .	2.6	7
64	The tombstones at the Monumental Cemetery of Milano select for a specialized microbial community. International Biodeterioration and Biodegradation, 2021, 164, 105298.	3.9	7
65	Low density polyethylene functionalized with antibiofilm compounds inhibits <i>Escherichia coli</i> cell adhesion. Journal of Biomedical Materials Research - Part A, 2017, 105, 3251-3261.	4.0	6
66	Biological risk assessment in the History and Historical Documentation Library of the University of Milan. Science of the Total Environment, 2021, 790, 148204.	8.0	6
67	Photorespiration and Rate Synchronization in a Phototroph-Heterotroph Microbial Consortium. Processes, 2017, 5, 11.	2.8	5
68	Label-Free Proteomic Approach to Study the Non-lethal Effects of Silver Nanoparticles on a Gut Bacterium. Frontiers in Microbiology, 2019, 10, 2709.	3. 5	5
69	Geomicrobial Investigations of Colored Outer Coatings from an Ethiopian Rock Art Gallery. Coatings, 2020, 10, 536.	2.6	5
70	Culture-Independent Methods to Study Subaerial Biofilm Growing on Biodeteriorated Surfaces of Stone Cultural Heritage and Frescoes. Methods in Molecular Biology, 2014, 1147, 341-366.	0.9	2
71	Understanding the Role of the Antioxidant Drug Erdosteine and Its Active Metabolite on Staphylococcus aureus Methicillin Resistant Biofilm Formation. Antioxidants, 2021, 10, 1922.	5.1	1