Cunming Duan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/858405/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Calcium State-Dependent Regulation of Epithelial Cell Quiescence by Stanniocalcin 1a. Frontiers in Cell and Developmental Biology, 2021, 9, 662915.	3.7	7
2	Regulation of cell quiescence–proliferation balance by Ca2+–CaMKK–Akt signaling. Journal of Cell Science, 2021, 134, .	2.0	9
3	IGF-2 mRNA binding protein 2 regulates primordial germ cell development in zebrafish. General and Comparative Endocrinology, 2021, 313, 113875.	1.8	4
4	Alteration of organ size and allometric scaling by organ-specific targeting of IGF signaling. General and Comparative Endocrinology, 2021, 314, 113922.	1.8	3
5	Insulin-Like Growth Factor Binding Protein-5 in Physiology and Disease. Frontiers in Endocrinology, 2020, 11, 100.	3.5	48
6	Gonadotropin-releasing hormone neuron development in vertebrates. General and Comparative Endocrinology, 2020, 292, 113465.	1.8	17
7	The metalloproteinase Papp-aa controls epithelial cell quiescence-proliferation transition. ELife, 2020, 9, .	6.0	12
8	Cell-autonomous regulation of epithelial cell quiescence by calcium channel Trpv6. ELife, 2019, 8, .	6.0	20
9	Hypoxic Treatment of Zebrafish Embryos and Larvae. Methods in Molecular Biology, 2018, 1742, 195-203.	0.9	6
10	Microinjection of Antisense Morpholinos, CRISPR/Cas9 RNP, and RNA/DNA into Zebrafish Embryos. Methods in Molecular Biology, 2018, 1742, 205-211.	0.9	21
11	Catch-Up Growth in Zebrafish Embryo Requires Neural Crest Cells Sustained by Irs1 Signaling. Endocrinology, 2018, 159, 1547-1560.	2.8	16
12	Ca ²⁺ concentration–dependent premature death of <i>igfbp5a</i> ^{<i>â^'/â^'</i>} fish reveals a critical role of IGF signaling in adaptive epithelial growth. Science Signaling, 2018, 11, .	3.6	22
13	Nuclear localization of Hifâ€3α requires two redundant NLS motifs in its unique Câ€ŧerminal region. FEBS Letters, 2018, 592, 2769-2775.	2.8	2
14	IGF-Binding Proteins: Why Do They Exist and Why Are There So Many?. Frontiers in Endocrinology, 2018, 9, 117.	3.5	326
15	Development of a Whole Organism Platform for Phenotype-Based Analysis of IGF1R-PI3K-Akt-Tor Action. Scientific Reports, 2017, 7, 1994.	3.3	13
16	Lamprey IGF-Binding Protein-3 Has IGF-Dependent and -Independent Actions. Frontiers in Endocrinology, 2017, 7, 174.	3.5	9
17	An oxygen-insensitive Hif-3α isoform inhibits Wnt signaling by destabilizing the nuclear β-catenin complex. ELife, 2016, 5,	6.0	18
18	Hypoxia-inducible factor 3 biology: complexities and emerging themes. American Journal of Physiology - Cell Physiology, 2016, 310, C260-C269.	4.6	176

#	Article	IF	CITATIONS
19	lt Takes Two Gonadotropins to Tango in Zebrafish But With a Mixed Tune. Endocrinology, 2015, 156, 3490-3493.	2.8	3
20	Functional Pairing of Class B1 Ligand-GPCR in Cephalochordate Provides Evidence of the Origin of PTH and PACAP/Glucagon Receptor Family. Molecular Biology and Evolution, 2015, 32, 2048-2059.	8.9	21
21	Nedd4-induced monoubiquitination of IRS-2 enhances IGF signalling and mitogenic activity. Nature Communications, 2015, 6, 6780.	12.8	64
22	Structural and functional analysis of amphioxus HIFα reveals ancient features of the HIFα family. FASEB Journal, 2014, 28, 1880-1890.	0.5	11
23	Aspp2 negatively regulates body growth but not developmental timing by modulating IRS signaling in zebrafish embryos. General and Comparative Endocrinology, 2014, 197, 82-91.	1.8	13
24	Calcium deficiency-induced and TRP channel-regulated IGF1R-PI3K-Akt signaling regulates abnormal epithelial cell proliferation. Cell Death and Differentiation, 2014, 21, 568-581.	11.2	70
25	Hypoxia-Inducible Factor 3 Is an Oxygen-Dependent Transcription Activator and Regulates a Distinct Transcriptional Response to Hypoxia. Cell Reports, 2014, 6, 1110-1121.	6.4	168
26	R-Spondin 3 Regulates Dorsoventral and Anteroposterior Patterning by Antagonizing Wnt/β-Catenin Signaling in Zebrafish Embryos. PLoS ONE, 2014, 9, e99514.	2.5	22
27	Structural and Functional Analysis of the Amphioxus IGFBP Gene Uncovers Ancient Origin of IGF-Independent Functions. Endocrinology, 2013, 154, 3753-3763.	2.8	19
28	Differential regulation of IGF-I and IGF-II gene expression in skeletal muscle cells. Molecular and Cellular Biochemistry, 2013, 373, 107-113.	3.1	41
29	Inducible transgenic expression in the shortâ€lived fish <i>Nothobranchius furzeri</i> . Journal of Fish Biology, 2013, 82, 1733-1738.	1.6	31
30	Pregnancy-associated Plasma Protein A (PAPP-A) Modulates the Early Developmental Rate in Zebrafish Independently of Its Proteolytic Activity. Journal of Biological Chemistry, 2013, 288, 9982-9992.	3.4	24
31	SUBFUNCTIONALIZATION OF CYPRINID HYPOXIA-INDUCIBLE FACTORS FOR ROLES IN DEVELOPMENT AND OXYGEN SENSING. Evolution; International Journal of Organic Evolution, 2013, 67, 873-882.	2.3	64
32	lgf Signaling is Required for Cardiomyocyte Proliferation during Zebrafish Heart Development and Regeneration. PLoS ONE, 2013, 8, e67266.	2.5	124
33	Duplicated Kiss1 receptor genes in zebrafish: distinct gene expression patterns, different ligand selectivity, and a novel nuclear isoform with transactivating activity. FASEB Journal, 2012, 26, 2941-2950.	0.5	29
34	Molecular, functional, and gene expression analysis of zebrafish hypoxia-inducible factor-3α. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R1165-R1174.	1.8	40
35	The Stress-Response Gene redd1 Regulates Dorsoventral Patterning by Antagonizing Wnt/β-catenin Activity in Zebrafish. PLoS ONE, 2012, 7, e52674.	2.5	26
36	Title is missing!. Kagaku To Seibutsu, 2012, 50, 11-13.	0.0	0

#	Article	IF	CITATIONS
37	IGF binding proteinâ€6 expression in vascular endothelial cells is induced by hypoxia and plays a negative role in tumor angiogenesis. International Journal of Cancer, 2012, 130, 2003-2012.	5.1	50
38	Comparative Endocrinology of Aging and Longevity Regulation. Frontiers in Endocrinology, 2011, 2, 75.	3.5	25
39	Role of IGF signaling in catch-up growth and accelerated temporal development in zebrafish embryos in response to oxygen availability. Development (Cambridge), 2011, 138, 777-786.	2.5	73
40	The Conserved Clusterin Gene Is Expressed in the Developing Choroid Plexus Under the Regulation of Notch But Not IGF Signaling in Zebrafish. Endocrinology, 2011, 152, 1860-1871.	2.8	22
41	IGF binding protein 3 exerts its ligand-independent action by antagonizing BMP in zebrafish embryos. Journal of Cell Science, 2011, 124, 1925-1935.	2.0	38
42	Evolution of the Insulin-Like Growth Factor Binding Protein (IGFBP) Family. Endocrinology, 2011, 152, 2278-2289.	2.8	123
43	Regulation of Temporal and Spatial Organization of Newborn GnRH Neurons by IGF Signaling in Zebrafish. Journal of Neuroscience, 2011, 31, 11814-11824.	3.6	38
44	Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: Roles in skeletal muscle growth and differentiation. General and Comparative Endocrinology, 2010, 167, 344-351.	1.8	401
45	Hypoxia converts the myogenic action of insulin-like growth factors into mitogenic action by differentially regulating multiple signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5857-5862.	7.1	82
46	Duplicated zebrafish insulinâ€like growth factor binding proteinâ€5 genes with split functional domains: evidence for evolutionarily conserved IGF binding, nuclear localization, and transactivation activity. FASEB Journal, 2010, 24, 2020-2029.	0.5	51
47	Zebrafish IGF Genes: Gene Duplication, Conservation and Divergence, and Novel Roles in Midline and Notochord Development. PLoS ONE, 2009, 4, e7026.	2.5	104
48	Structural, gene expression, and functional analysis of the fugu (Takifugu rubripes) insulin-like growth factor binding protein-4 gene. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R558-R566.	1.8	24
49	Molecular and functional characterization of two distinct IGF binding protein-6 genes in zebrafish. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1348-R1357.	1.8	48
50	Patterned delivery and expression of gene constructs into zebrafish embryos using microfabricated interfaces. Biomedical Microdevices, 2009, 11, 633-641.	2.8	16
51	Hypoxia and Leucine Deprivation Induce Human Insulin-Like Growth Factor Binding Protein-1 Hyperphosphorylation and Increase Its Biological Activity. Endocrinology, 2009, 150, 220-231.	2.8	39
52	The Role of Insulin Receptor Signaling in Zebrafish Embryogenesis. Endocrinology, 2008, 149, 5996-6005.	2.8	57
53	IGFBP-5 regulates muscle cell differentiation by binding to IGF-II and switching on the IGF-II auto-regulation loop. Journal of Cell Biology, 2008, 182, 979-991.	5.2	117
54	Duplication and Diversification of the Hypoxia-Inducible IGFBP-1 Gene in Zebrafish. PLoS ONE, 2008, 3, e3091.	2.5	102

#	Article	IF	CITATIONS
55	Duplication of the IGFBP-2 Gene in Teleost Fish: Protein Structure and Functionality Conservation and Gene Expression Divergence. PLoS ONE, 2008, 3, e3926.	2.5	83
56	Insulin-like growth factor receptor 1b is required for zebrafish primordial germ cell migration and survival. Developmental Biology, 2007, 305, 377-387.	2.0	44
57	Insulin-like growth factor signaling regulates zebrafish embryonic growth and development by promoting cell survival and cell cycle progression. Cell Death and Differentiation, 2007, 14, 1095-1105.	11.2	98
58	Insulinâ€like growth factorâ€binding proteinâ€1: an evolutionarily conserved fine tuner of insulinâ€like growth factor action under catabolic and stressful conditions. Journal of Fish Biology, 2007, 71, 309-325.	1.6	33
59	Gene duplication and functional divergence of the zebrafish insulinâ€like growth factor 1 receptors. FASEB Journal, 2006, 20, 1230-1232.	0.5	58
60	Several Acidic Amino Acids in the N-domain of Insulin-like Growth Factor-binding Protein-5 Are Important for Its Transactivation Activity*. Journal of Biological Chemistry, 2006, 281, 14184-14191.	3.4	46
61	Understanding Hypoxia-Induced Gene Expression in Early Development: In Vitro and In Vivo Analysis of Hypoxia-Inducible Factor 1-Regulated Zebra Fish Insulin-Like Growth Factor Binding Protein 1 Gene Expression. Molecular and Cellular Biology, 2006, 26, 1142-1155.	2.3	138
62	Roles of insulin-like growth factor (IGF) binding proteins in regulating IGF actions. General and Comparative Endocrinology, 2005, 142, 44-52.	1.8	293
63	Insulin-like Growth Factor-binding Protein-3 Plays an Important Role in Regulating Pharyngeal Skeleton and Inner Ear Formation and Differentiation. Journal of Biological Chemistry, 2005, 280, 3613-3620.	3.4	63
64	Targeted Knockdown of Insulin-Like Growth Factor Binding Protein-2 Disrupts Cardiovascular Development in Zebrafish Embryos. Molecular Endocrinology, 2005, 19, 1024-1034.	3.7	66
65	Insulin-like growth factor-binding protein-1 (IGFBP-1) mediates hypoxia-induced embryonic growth and developmental retardation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1240-1245.	7.1	226
66	Corticotropin-releasing factor receptor subtype 1 and somatostatin modulating hypoxia-caused downregulated mRNA of pituitary growth hormone and upregulated mRNA of hepatic insulin-like growth factor-I of rats. Molecular and Cellular Endocrinology, 2005, 242, 50-58.	3.2	9
67	Insulin-Like Growth Factor Signaling in Fish. International Review of Cytology, 2005, 243, 215-285.	6.2	498
68	Paradoxical Actions of Endogenous and Exogenous Insulin-like Growth Factor-binding Protein-5 Revealed by RNA Interference Analysis. Journal of Biological Chemistry, 2004, 279, 32660-32666.	3.4	49
69	Evidence That IGF Binding Protein-5 Functions as a Ligand-Independent Transcriptional Regulator in Vascular Smooth Muscle Cells. Circulation Research, 2004, 94, E46-54.	4.5	69
70	Fibronectin Binds Insulin-like Growth Factor-binding Protein 5 and Abolishes Its Ligand-dependent Action on Cell Migration. Journal of Biological Chemistry, 2004, 279, 4269-4277.	3.4	45
71	Intermittent hypoxia causes a suppressed pituitary growth hormone through somatostatin. Neuroendocrinology Letters, 2004, 25, 361-7.	0.2	12
72	The chemotactic and mitogenic responses of vascular smooth muscle cells to insulin-like growth factor-I require the activation of ERK1/2. Molecular and Cellular Endocrinology, 2003, 206, 75-83.	3.2	25

#	Article	IF	CITATIONS
73	Regulation of Vascular Smooth Muscle Cell Responses to Insulin-like Growth Factor (IGF)-I by Local IGF-binding Proteins. Journal of Biological Chemistry, 2003, 278, 42886-42892.	3.4	60
74	Structure, Developmental Expression, and Physiological Regulation of Zebrafish IGF Binding Protein-1. Endocrinology, 2002, 143, 2722-2731.	2.8	114
75	Structural, Biochemical, and Expression Analysis of Two Distinct Insulin-Like Growth Factor I Receptors and Their Ligands in Zebrafish*. Endocrinology, 2002, 143, 1858-1871.	2.8	143
76	Specifying the cellular responses to IGF signals: roles of IGF-binding proteins. Journal of Endocrinology, 2002, 175, 41-54.	2.6	129
77	Ontogeny, tissue distribution, and hormonal regulation of insulin-like growth factor binding protein-2 (IGFBP-2) in a marine fish,. General and Comparative Endocrinology, 2002, 128, 112-122.	1.8	43
78	Structure, Developmental Expression, and Physiological Regulation of Zebrafish IGF Binding Protein-1. Endocrinology, 2002, 143, 2722-2731.	2.8	40
79	IGFs stimulate zebrafish cell proliferation by activating MAP kinase and PI3-kinase-signaling pathways. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R1230-R1239.	1.8	106
80	Biochemical and functional analysis of a conserved IGF-binding protein isolated from rainbow trout (Oncorhynchus mykiss) hepatoma cells. Journal of Endocrinology, 2001, 170, 619-628.	2.6	40
81	Purification, Characterization, and Bioassay of Prolactin and Growth Hormone from Temperate Basses, Genus Morone. General and Comparative Endocrinology, 2000, 117, 138-150.	1.8	10
82	Phosphatidylinositol 3-Kinase Is Required for Insulin-Like Growth Factor-I–Induced Vascular Smooth Muscle Cell Proliferation and Migration. Circulation Research, 2000, 86, 15-23.	4.5	143
83	Down-Regulation of Protein Kinase C Inhibits Insulin-Like Growth Factor I-Induced Vascular Smooth Muscle Cell Proliferation, Migration, and Gene Expression1. Endocrinology, 1999, 140, 4622-4632.	2.8	56
84	Insulin-like Growth Factor (IGF)-I Regulates IGF-binding Protein-5 Gene Expression through the Phosphatidylinositol 3-Kinase, Protein Kinase B/Akt, and p70 S6 Kinase Signaling Pathway. Journal of Biological Chemistry, 1999, 274, 37147-37153.	3.4	72
85	Insulin-like growth factor binding protein 2 is a growth inhibitory protein conserved in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 15274-15279.	7.1	126
86	Down-Regulation of Protein Kinase C Inhibits Insulin-Like Growth Factor I-Induced Vascular Smooth Muscle Cell Proliferation, Migration, and Gene Expression. Endocrinology, 1999, 140, 4622-4632.	2.8	17
87	Osteogenic protein-1 regulates insulin-like growth factor-I (IGF-I), IGF-II, and IGF-binding protein-5 (IGFBP-5) gene expression in fetal rat calvaria cells by different mechanisms. , 1998, 175, 78-88.		29
88	Insulin-Like Growth Factor-Binding Protein-5 Is Cleaved by Physiological Concentrations of Thrombin*. Endocrinology, 1998, 139, 1708-1714.	2.8	53
89	The Effect of Extracellular Matrix Proteins on Porcine Smooth Muscle Cell Insulin-like Growth Factor (IGF) Binding Protein-5 Synthesis and Responsiveness to IGF-I. Journal of Biological Chemistry, 1998, 273, 8994-9000.	3.4	42
90	Differential Expression and Biological Effects of Insulin-like Growth Factor-binding Protein-4 and -5 in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 1998, 273, 16836-16842.	3.4	89

#	Article	IF	CITATIONS
91	Nutritional and Developmental Regulation of Insulin-like Growth Factors in Fish. Journal of Nutrition, 1998, 128, 306S-314S.	2.9	355
92	The Insulin-like Growth Factor System and Its Biological Actions in Fish. American Zoologist, 1997, 37, 491-503.	0.7	222
93	Retinoic Acid Inhibits Cell Growth in HPV Negative Cervical Carcinoma Cells by Induction of Insulin-like Growth Factor Binding Protein-5 (IGFBP-5) Secretion. Biochemical and Biophysical Research Communications, 1997, 239, 706-709.	2.1	22
94	Characterization of Two Forms of Recombinant Salmon Insulin-Like Growth Factor-I: Activities and Complexing with Insulin-Like Growth Factor-I Binding Proteins. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1997, 117, 201-206.	0.5	5
95	Insulin-like Growth Factor-I (IGF-I) Regulates IGF-binding Protein-5 Synthesis through Transcriptional Activation of the Gene in Aortic Smooth Muscle Cells. Journal of Biological Chemistry, 1996, 271, 4280-4288.	3.4	84
96	Transcription Factor AP-2 Regulates Human Insulin-like Growth Factor Binding Protein-5 Gene Expression. Journal of Biological Chemistry, 1995, 270, 24844-24851.	3.4	90
97	Incorporation of 35S-sulfate into branchial cartilage: a biological model to study hormonal regulation of skeletal growth in fish. Biochemistry and Molecular Biology of Fishes, 1994, 3, 525-533.	0.5	5
98	Recombinant coho salmon insulin-like growth factor I. Expression in Escherichia coli, purification and characterization. FEBS Journal, 1993, 218, 205-211.	0.2	34
99	Epidermal Growth Factor Stimulates Protein Synthesis in Primary Cultures of Salmon Hepatocytes. General and Comparative Endocrinology, 1993, 90, 383-388.	1.8	2
100	Plasma kinetics of growth hormone in the Japanese eel, Anguilla japonica. Aquaculture, 1991, 95, 179-188.	3.5	30
101	Effects of recombinant eel growth hormone on the uptake of [35S]sulfate by ceratobranchial cartilages of the Japanese eel, Anguilla japonica. General and Comparative Endocrinology, 1990, 79, 320-325.	1.8	32
102	Evidences for the presence of a somatomedin-like plasma factor(s) in the Japanese eel, Anguilla japonica. General and Comparative Endocrinology, 1990, 79, 326-331.	1.8	35
103	Stimulation of35S-sulfate uptake by mammalian insulin-like growth factors I and II in cultured cartilages of the Japanese eel,Anguilla japonica. The Journal of Experimental Zoology, 1990, 256, 347-350.	1.4	59