TarcÃ-sio Abreu Saurin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8583858/publications.pdf

Version: 2024-02-01

TADCÃSIO ARDELL SALIDIN

#	Article	IF	CITATIONS
1	Implementing lean production systems: research areas and opportunities for future studies. International Journal of Production Research, 2013, 51, 6663-6680.	4.9	291
2	A systematic literature review of resilience engineering: Research areas and a research agenda proposal. Reliability Engineering and System Safety, 2015, 141, 142-152.	5.1	232
3	A method for assessing health and safety management systems from the resilience engineering perspective. Safety Science, 2009, 47, 1056-1067.	2.6	143
4	A framework for assessing the use of lean production practices in manufacturing cells. International Journal of Production Research, 2011, 49, 3211-3230.	4.9	125
5	The impacts of lean production on working conditions: A case study of a harvester assembly line in Brazil. International Journal of Industrial Ergonomics, 2009, 39, 403-412.	1.5	116
6	Contextual factors and lean production implementation in the Brazilian automotive supply chain. Supply Chain Management, 2016, 21, 417-432.	3.7	115
7	An analysis of construction safety best practices from a cognitive systems engineering perspective. Safety Science, 2008, 46, 1169-1183.	2.6	100
8	Identification, analysis and dissemination of information on near misses: A case study in the construction industry. Safety Science, 2010, 48, 91-99.	2.6	96
9	Managing barriers to lean production implementation: context matters. International Journal of Production Research, 2015, 53, 3947-3962.	4.9	91
10	Reducing construction waste: A study of urban infrastructure projects. Waste Management, 2017, 67, 265-277.	3.7	80
11	A complex systems theory perspective of lean production. International Journal of Production Research, 2013, 51, 5824-5838.	4.9	79
12	The impacts of lean production on the complexity of socio-technical systems. International Journal of Production Economics, 2018, 197, 342-357.	5.1	72
13	Safety and production: an integrated planning and control model. Construction Management and Economics, 2004, 22, 159-169.	1.8	65
14	Evaluation and improvement of a method for assessing HSMS from the resilience engineering perspective: A case study of an electricity distributor. Safety Science, 2011, 49, 355-368.	2.6	63
15	Classification and relationships between risks that affect lean production implementation. Journal of Manufacturing Technology Management, 2015, 26, 57-79.	3.3	61
16	Complex socio-technical systems: Characterization and management guidelines. Applied Ergonomics, 2015, 50, 19-30.	1.7	59
17	Impacts of Healthcare 4.0 digital technologies on the resilience of hospitals. Technological Forecasting and Social Change, 2021, 166, 120666.	6.2	59
18	Lean production in complex socio-technical systems: A systematic literature review. Journal of Manufacturing Systems, 2017, 45, 135-148.	7.6	53

TARCÃSIO ABREU SAURIN

#	Article	IF	CITATIONS
19	The joint use of resilience engineering and lean production for work system design: A study in healthcare. Applied Ergonomics, 2018, 71, 45-56.	1.7	53
20	Participatory ergonomics intervention for improving human and production outcomes of a Brazilian furniture company. International Journal of Industrial Ergonomics, 2015, 49, 97-107.	1.5	51
21	Resilience skills as emergent phenomena: A study of emergency departments in Brazil and the United States. Applied Ergonomics, 2016, 56, 227-237.	1.7	50
22	Monitoring complexity and resilience in construction projects: The contribution of safety performance measurement systems. Applied Ergonomics, 2020, 82, 102978.	1.7	49
23	How can general leadership theories help to expand the knowledge of lean leadership?. Production Planning and Control, 2019, 30, 1322-1336.	5.8	46
24	A framework for assessing poka-yoke devices. Journal of Manufacturing Systems, 2012, 31, 358-366.	7.6	43
25	How context factors influence lean production practices in manufacturing cells. International Journal of Advanced Manufacturing Technology, 2015, 79, 1389-1399.	1.5	37
26	Assessing the compatibility of the management of standardized procedures with the complexity of a sociotechnical system: Case study of a control room in an oil refinery. Applied Ergonomics, 2013, 44, 811-823.	1.7	36
27	Using a procedure doesn't mean following it: A cognitive systems approach to how a cockpit manages emergencies. Safety Science, 2016, 89, 147-157.	2.6	35
28	The design of scenario-based training from the resilience engineering perspective: A study with grid electricians. Accident Analysis and Prevention, 2014, 68, 30-41.	3.0	34
29	Lean leadership competencies: a multi-method study. Management Decision, 2017, 55, 2163-2180.	2.2	34
30	A framework for the analysis of slack in socio-technical systems. Reliability Engineering and System Safety, 2017, 167, 439-451.	5.1	33
31	Ergonomic assessment of suspended scaffolds. International Journal of Industrial Ergonomics, 2008, 38, 238-246.	1.5	30
32	Identificação de oportunidades de pesquisa a partir de um levantamento da implantação da produção enxuta em empresas do Brasil e do exterior. Gestão & Produção, 2010, 17, 829-841.	0.5	30
33	Contributions of Healthcare 4.0 digital applications to the resilience of healthcare organizations during the COVID-19 outbreak. Technovation, 2022, 111, 102379.	4.2	30
34	Safety inspections in construction sites: A systems thinking perspective. Accident Analysis and Prevention, 2016, 93, 240-250.	3.0	29
35	A resilience engineering perspective of safety performance measurement systems: A systematic literature review. Safety Science, 2020, 130, 104864.	2.6	28
36	Analysis of a safety planning and control model from the human error perspective. Engineering, Construction and Architectural Management, 2005, 12, 283-298.	1.8	26

TarcÃsio Abreu Saurin

#	Article	IF	CITATIONS
37	A framework for identifying and analyzing sources of resilience and brittleness: AÂcase study of two air taxi carriers. International Journal of Industrial Ergonomics, 2012, 42, 312-324.	1.5	24
38	Losses in Water Distribution Systems: A Complexity Theory Perspective. Water Resources Management, 2018, 32, 2919-2936.	1.9	23
39	A complexity theory perspective of kaizen: a study in healthcare. Production Planning and Control, 2019, 30, 1337-1353.	5.8	23
40	Integrated modelling of built environment and functional requirements: Implications for resilience. Applied Ergonomics, 2020, 88, 103154.	1.7	23
41	Coping with complexity in intensive care units: A systematic literature review of improvement interventions. Safety Science, 2019, 118, 814-825.	2.6	22
42	How a cockpit calculates its speeds and why errors while doing this are so hard to detect. Cognition, Technology and Work, 2011, 13, 217-231.	1.7	21
43	The impact of Industry 4.0 on the relationship between TPM and maintenance performance. Journal of Manufacturing Technology Management, 2022, 33, 489-520.	3.3	21
44	Modelling interactions between procedures and resilience skills. Applied Ergonomics, 2018, 68, 328-337.	1.7	20
45	Identification of non-technical skills from the resilience engineering perspective: a case study of an electricity distributor. Work, 2012, 41, 3069-3076.	0.6	19
46	A taxonomy of interactions in socio-technical systems: A functional perspective. Applied Ergonomics, 2020, 82, 102980.	1.7	19
47	An algorithm for classifying error types of front-line workers based on the SRK framework. International Journal of Industrial Ergonomics, 2008, 38, 1067-1077.	1.5	18
48	A complexity thinking account of the COVID-19 pandemic: Implications for systems-oriented safety management. Safety Science, 2021, 134, 105087.	2.6	17
49	Bundles of Lean Automation practices and principles and their impact on operational performance. International Journal of Production Economics, 2021, 235, 108106.	5.1	17
50	Digital technologies: An exploratory study of their role in the resilience of healthcare services. Applied Ergonomics, 2021, 97, 103517.	1.7	17
51	Ergonomic assessment of suspended scaffolds. International Journal of Industrial Ergonomics, 2006, 36, 229-237.	1.5	16
52	Lean-as-imagined differs from lean-as-done: the influence of complexity. Production Planning and Control, 2022, 33, 1097-1114.	5.8	16
53	Design for resilient performance: Concept and principles. Applied Ergonomics, 2022, 101, 103707.	1.7	15
54	Avaliação qualitativa da implantação de práticas da produção enxuta: estudo de caso em uma fábrica de máquinas agrÃcolas. Gestão & Produção, 2008, 15, 449-462.	0.5	14

TARCÃSIO ABREU SAURIN

#	Article	IF	CITATIONS
55	How to identify key players that contribute to resilient performance: A social network analysis perspective. Safety Science, 2022, 148, 105648.	2.6	14
56	Integrating Safety-I and Safety-II: Learning from failure and success in construction sites. Safety Science, 2022, 148, 105672.	2.6	14
57	Lean production myths: an exploratory study. Journal of Manufacturing Technology Management, 2020, 32, 1-19.	3.3	13
58	Making resilience explicit in FRAM: Shedding light on desired outcomes. Human Factors and Ergonomics in Manufacturing, 2021, 31, 579-597.	1.4	12
59	Digitalization of maintenance: exploratory study on the adoption of Industry 4.0 technologies and total productive maintenance practices. Production Planning and Control, 2024, 35, 352-372.	5.8	12
60	Monitor, anticipate, respond, and learn: Developing and interpreting a multilayer social network of resilience abilities. Safety Science, 2021, 136, 105148.	2.6	11
61	Ethics in Publishing: Complexity Science and Human Factors Offer Insights to Develop a Just Culture. Science and Engineering Ethics, 2016, 22, 1849-1854.	1.7	10
62	A framework for analyzing how context influences lean leadership. International Journal of Lean Six Sigma, 2021, 12, 149-174.	2.4	9
63	A resilience engineering-based framework for assessing safety performance measurement systems: A study in the construction industry. Safety Science, 2021, 142, 105364.	2.6	9
64	Improving an algorithm for classifying error types of front-line workers: Insights from a case study in the construction industry. Safety Science, 2010, 48, 422-429.	2.6	8
65	Findings from the Analysis of Incident-Reporting Systems of Construction Companies. Journal of Construction Engineering and Management - ASCE, 2015, 141, .	2.0	8
66	Resilience skills used by front-line workers to assemble precast concrete structures: an exploratory study. Ambiente ConstruÃdo, 2017, 17, 25-43.	0.2	8
67	Information and communication technologies in emergency care services for patients with COVID-19: a multi-national study. International Journal of Production Research, 2023, 61, 8384-8400.	4.9	8
68	A systems thinking based method for assessing safety management best practices in construction. Safety Science, 2021, 141, 105345.	2.6	8
69	Characterizing complexity in socio-technical systems: a case study of a SAMU Medical Regulation Center. Work, 2012, 41, 1811-1817.	0.6	7
70	Analysis of the preparation and administration of medications in the hospital context based on Lean thinking. Escola Anna Nery, 2018, 22, .	0.2	7
71	A method for assessing pull production systems: a study of manufacturing, healthcare, and construction. Production Planning and Control, 2021, 32, 1063-1083.	5.8	7
72	Identification and assessment of requirements of temporary edge protection systems for buildings. International Journal of Industrial Ergonomics, 2017, 58, 90-108.	1.5	6

TarcÃsio Abreu Saurin

#	Article	IF	CITATIONS
73	Relationships between competences and lean automation practices: an exploratory study. Production Planning and Control, 2023, 34, 689-704.	5.8	6
74	Removing Waste While Preserving Slack: The Lean and Complexity Perspectives. , 0, , .		6
75	Gestão de barreiras na implantação da produção enxuta: um estudo no setor automobilÃstico. Revista Produção Online, 2016, 16, 313.	0.1	5
76	Managing Complexity and Manifestations of Resilience in Operating Theatres. , 2021, , 19-30.		5
77	Coping with complexity in the COVID pandemic: An exploratory study of intensive care units. Human Factors and Ergonomics in Manufacturing, 2022, 32, 301-318.	1.4	5
78	The nature and role of informal resilience practices in the performance of lean production systems. Journal of Manufacturing Technology Management, 2022, 33, 1080-1101.	3.3	5
79	Consciência situacional, tomada de decisão e modos de controle cognitivo em ambientes complexos. Production, 2009, 19, 433-444.	1.3	4
80	Uma análise das barreiras e dificuldades em lean healthcare. Revista Produção Online, 2017, 17, 620-640.	0.1	4
81	Choosing fall protection systems in construction sites: Coping with complex rather than complicated systems. Safety Science, 2021, 143, 105412.	2.6	4
82	The Functional Resonance Analysis Method as a Debriefing Tool in Scenario-Based-Training. Advances in Intelligent Systems and Computing, 2019, , 132-138.	0.5	4
83	The Last Planner® System as an approach for coping with the complexity of construction projects. , 2020, , 325-340.		4
84	Analysis of hospital flow management: the 3 Râ \in $^{ m Ms}$ approach. Production, 0, 30, .	1.3	4
85	The Role of Slack in Standardized Work in Construction: An Exploratory Study. , 0, , .		4
86	The Built Environment Influence on Resilient Healthcare: A Systematic Literature Review of Design Knowledge. Herd, 2022, 15, 329-350.	0.9	4
87	Diretrizes para avaliação dos impactos da produção enxuta sobre as condições de trabalho. Production, 2008, 18, 508-522.	1.3	3
88	Avaliação de requisitos de desempenho de Sistemas de Proteção Periférica (SPP). Ambiente ConstruÃdo, 2015, 15, 267-289.	0.2	3
89	Solução de problemas em uma emergência hospitalar: avaliação dos métodos A3 e análise de causa raiz Revista Produção Online, 2020, 20, 63-94.	· 0.1	3
90	IDENTIFICANDO OPORTUNIDADES DE MELHORIA NO PROCESSO DE ALTA DO PACIENTE DE MATERNIDADE POR MEIO DO LEAN HEALTHCARE. IngenierÃa Industrial, 2017, 16, 89-102.	0.0	3

TARCÃSIO ABREU SAURIN

#	Article	IF	CITATIONS
91	Principles for Safety Performance Measurement Systems Based on Resilience Engineering. , 0, , .		3
92	Segurança no trabalho e desenvolvimento de produto: diretrizes para integração na construção civil. Production, 2005, 15, 127-141.	1.3	2
93	Planejamento e controle integrado entre segurança e produção em processos crÃticos na construção civil. Production, 2008, 18, 479-492.	1.3	2
94	O papel da gestão de requisitos em projetos de ambientes construÃdos: um estudo de caso. Revista Produção Online, 2011, 11, 965.	0.1	2
95	Método para classificação de tipos de erros humanos: estudo de caso em acidentes em canteiros de obras. Production, 2012, 22, 259-269.	1.3	2
96	Circadian Rhythms as a Basis for Work Organization. Human Factors, 2013, 55, 204-217.	2.1	2
97	PrincÃpios para o projeto de sistemas de medição de desempenho em segurança e saúde no trabalho: a perspectiva da engenharia de resiliência. Production, 2013, 23, 387-401.	1.3	2
98	Identificação e classificação de riscos na implantação da produção enxuta. Production, 2015, 25, 911-925.	1.3	2
99	A framework to select innovations in patents to improve temporary edge protection systems in buildings. Ambiente ConstruÃdo, 2017, 17, 137-151.	0.2	2
100	Análise de acidente ambiental: estudo de caso usando o Método de Análise da Ressonância Funcional. Engenharia Sanitaria E Ambiental, 2018, 23, 373-383.	0.1	2
101	Uma sistemÃįtica para a avaliação de riscos na implantação de produção enxuta. Revista Produção Online, 2014, 14, 364.	0.1	2
102	Análise do campo conceitual da engenharia de sistemas cognitivos e proposta de uma nova agenda de pesquisa. Production, 2014, 24, 405-419.	1.3	2
103	Where process improvement meets resilience. , 2018, , 174-185.		2
104	Segurança e produção: um modelo para o planejamento e controle integrado. Production, 2002, 12, 60-71.	1.3	2
105	Safety-I and safety-II: opportunities for an integrated approach in the construction industry. , 0, , .		2
106	Impact of Industry 4.0 adoption on workload demands in contact centers. Human Factors and Ergonomics in Manufacturing, 2022, 32, 406-418.	1.4	2
107	Diretrizes para identificação e análise de fontes de resiliência e fragilidades: estudo de caso em duas empresas de táxi-aéreo. Production, 2013, 23, 777-792.	1.3	1
108	A influência das práticas de produção enxuta nos atributos qualificadores das células de manufatura. Revista Produção Online, 2013, 13, 1252.	0.1	1

#	Article	IF	CITATIONS
109	Modelo de relações entre os riscos que afetam a implantação de produção enxuta. Gestão & ProduçÃ: 2018, 25, 696-712.	eo.5	1
110	Aplicação do fram para solução de problemas em sistemas sócio-técnicos complexos: estudo de caso em uma unidade hospitalar. Revista Produção Online, 2019, 19, 102-128.	0.1	1
111	How the cockpit manages anomalies: revisiting the dynamic fault management model for aviation. Cognition, Technology and Work, 2020, 22, 143-157.	1.7	1
112	The Built EnvironmentÂ's Influence on Resilience of Healthcare Services: Lessons Learnt From the Covid-19 Pandemic. , 0, , .		1
113	Avaliação de carga de trabalho em alunos de pós-graduação em engenharia de produção: um estudo exploratório. GestA£o & Produção, 2015, 22, 678-690.	0.5	1
114	Avançando na implantação da logÃstica interna lean: dificuldades e resultados alcançados no caso de uma empresa montadora de veÃculos. Revista Produção Online, 2012, 12, 455.	0.1	1
115	LEAN OFFICE: STUDY ON THE APPLICABILITY OF THE CONCEPT IN A DESIGN COMPANY. , 0, , .		1
116	Visual Management in Healthcare: A Systematic Literature Review of Main Practices and Applications. Springer Proceedings in Mathematics and Statistics, 2020, , 177-191.	0.1	1
117	Gestão de requisitos na construção civil: um estudo de caso focado nos requisitos ambientais de um projeto urbanÃstico. Production, 2013, 23, 345-363.	1.3	0
118	Habilidades de resiliência em distribuidora de energia elétrica: recrutamento, seleção e treinamento de eletricistas e operadores do centro de operações da distribuição. Revista Produção Online, 2018, 18, 479-503.	0.1	0
119	Computational Platform for Training Hydroelectric Power Plant Operators in Resilience Skills. Lecture Notes in Networks and Systems, 2021, , 543-550.	0.5	0
120	Boas práticas e dificuldades para melhorar a saúde e segurança do trabalho na construção civil durante a pandemia de COVID-19. , 0, , .		0
121	Análise das interfaces entre modelos causais de acidentes: um estudo de caso em atividades de manutenção de um complexo hospitalar. Interface: Communication, Health, Education, 2008, 12, 835-852.	0.4	0
122	Propostas de melhorias em um método de avaliação de sistemas de gestão de segurança e saúde no trabalho. Production, 2011, 21, 165-180.	1.3	0
123	A Framework For Identifying And Analyzing Sources Of Resilience And Brittleness: A Case Study Of An Air Taxi Carrier. , 2011, , 234-240.		0
124	Help chain: guidelines for design and operation in Lean Production Systems. Gestão & Produção, 2019, 26, .	0.5	0
125	A visão da engenharia de resiliênca sob o trabalho de operadores de sala de controle em uma distribuidora de energia elétrica. Revista Produção Online, 2019, 19, 617-639.	0.1	0