Rolf Altenburger

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8583710/rolf-altenburger-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 148
 7,531
 49
 83

 papers
 citations
 h-index
 g-index

 150
 8,368
 6.4
 5.85

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
148	The EU chemicals strategy for sustainability: an opportunity to develop new approaches for hazard and risk assessment <i>Archives of Toxicology</i> , 2022 ,	5.8	1
147	The Eco-Exposome concept: Supporting an Integrated Assessment of Mixtures of Environmental Chemicals. <i>Environmental Toxicology and Chemistry</i> , 2021 ,	3.8	3
146	Chemical Pollution Levels in a River Explain Site-Specific Sensitivities to Micropollutants within a Genetically Homogeneous Population of Freshwater Amphipods. <i>Environmental Science & Environmental Science & Technology</i> , 2021 , 55, 6087-6096	10.3	2
145	Assessing Combined Effects for Mixtures of Similar and Dissimilar Acting Neuroactive Substances on Zebrafish Embryo Movement. <i>Toxics</i> , 2021 , 9,	4.7	1
144	Disentangling multiple chemical and non-chemical stressors in a lotic ecosystem using a longitudinal approach. <i>Science of the Total Environment</i> , 2021 , 769, 144324	10.2	7
143	Unravelling the chemical exposome in cohort studies: routes explored and steps to become comprehensive. <i>Environmental Sciences Europe</i> , 2021 , 33, 17	5	9
142	We need a global science-policy body on chemicals and waste. <i>Science</i> , 2021 , 371, 774-776	33.3	23
141	Pesticides are the dominant stressors for vulnerable insects in lowland streams. <i>Water Research</i> , 2021 , 201, 117262	12.5	27
140	Computational material flow analysis for thousands of chemicals of emerging concern in European waters. <i>Journal of Hazardous Materials</i> , 2020 , 397, 122655	12.8	19
139	Mixture toxicity analysis in zebrafish embryo: a time and concentration resolved study on mixture effect predictivity. <i>Environmental Sciences Europe</i> , 2020 , 32,	5	5
138	Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. <i>Environment International</i> , 2020 , 134, 105267	12.9	81
137	Effect-based methods are key. The European Collaborative Project SOLUTIONS recommends integrating effect-based methods for diagnosis and monitoring of water quality. <i>Environmental Sciences Europe</i> , 2019 , 31,	5	82
136	Future pesticide risk assessment: narrowing the gap between intention and reality. <i>Environmental Sciences Europe</i> , 2019 , 31,	5	47
135	Let us empower the WFD to prevent risks of chemical pollution in European rivers and lakes. <i>Environmental Sciences Europe</i> , 2019 , 31,	5	10
134	Map and model-moving from observation to prediction in toxicogenomics. <i>GigaScience</i> , 2019 , 8,	7.6	14
133	Combined effects of environmental xeno-estrogens within multi-component mixtures: Comparison of in vitro human- and zebrafish-based estrogenicity bioassays. <i>Chemosphere</i> , 2019 , 227, 334-344	8.4	12
132	From the air to the water phase: implication for toxicity testing of combustion-derived particles. <i>Biomass Conversion and Biorefinery</i> , 2019 , 9, 213-225	2.3	3

131	Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures. <i>Environmental Sciences Europe</i> , 2019 , 31,	5	96
130	Strengthen the European collaborative environmental research to meet European policy goals for achieving a sustainable, non-toxic environment. <i>Environmental Sciences Europe</i> , 2019 , 31,	5	5
129	Increase coherence, cooperation and cross-compliance of regulations on chemicals and water quality. <i>Environmental Sciences Europe</i> , 2019 , 31,	5	7
128	Prioritisation of water pollutants: the EU Project SOLUTIONS proposes a methodological framework for the integration of mixture risk assessments into prioritisation procedures under the European Water Framework Directive. <i>Environmental Sciences Europe</i> , 2019 , 31,	5	13
127	A holistic approach is key to protect water quality and monitor, assess and manage chemical pollution of European surface waters. <i>Environmental Sciences Europe</i> , 2019 , 31,	5	10
126	Improved component-based methods for mixture risk assessment are key to characterize complex chemical pollution in surface waters. <i>Environmental Sciences Europe</i> , 2019 , 31,	5	26
125	Mixture risks threaten water quality: the European Collaborative Project SOLUTIONS recommends changes to the WFD and better coordination across all pieces of European chemicals legislation to improve protection from exposure of the aquatic environment to multiple pollutants.	5	27
124	Environmental Sciences Europe, 2019 , 31, Can Environmentally Relevant Neuroactive Chemicals Specifically Be Detected with the Locomotor Response Test in Zebrafish Embryos?. <i>Environmental Science & Environmental </i>	10.3	19
123	Mixture effects in samples of multiple contaminants - An inter-laboratory study with manifold bioassays. <i>Environment International</i> , 2018 , 114, 95-106	12.9	80
122	Meta-analysis of fish early life stage tests-Association of toxic ratios and acute-to-chronic ratios with modes of action. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 955-969	3.8	15
121	Use of prospective and retrospective risk assessment methods that simplify chemical mixtures associated with treated domestic wastewater discharges. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 690-702	3.8	20
120	Environmental mixtures of nanomaterials and chemicals: The Trojan-horse phenomenon and its relevance for ecotoxicity. <i>Science of the Total Environment</i> , 2018 , 635, 1170-1181	10.2	104
119	Uptake Kinetics and Subcellular Compartmentalization Explain Lethal but Not Sublethal Effects of Cadmium in Two Closely Related Amphipod Species. <i>Environmental Science & Environmental Science & Env</i>	10.3	8
118	The Transcriptome of the Zebrafish Embryo After Chemical Exposure: A Meta-Analysis. <i>Toxicological Sciences</i> , 2017 , 157, 291-304	4.4	27
117	An expanded conceptual framework for solution-focused management of chemical pollution in European waters. <i>Environmental Sciences Europe</i> , 2017 , 29, 13	5	21
116	From the exposome to mechanistic understanding of chemical-induced adverse effects. <i>Environment International</i> , 2017 , 99, 97-106	12.9	113
115	Project house water: a novel interdisciplinary framework to assess the environmental and socioeconomic consequences of flood-related impacts. <i>Environmental Sciences Europe</i> , 2017 , 29, 23	5	6
114	Biotransformation in the zebrafish embryo -temporal gene transcription changes of cytochrome P450 enzymes and internal exposure dynamics of the AhR binding xenobiotic benz[a]anthracene. <i>Environmental Pollution</i> , 2017 , 230, 1-11	9.3	19

113	Development of a bioanalytical test battery for water quality monitoring: Fingerprinting identified micropollutants and their contribution to effects in surface water. <i>Water Research</i> , 2017 , 123, 734-750	12.5	129
112	Integrating chemical analysis and bioanalysis to evaluate the contribution of wastewater effluent on the micropollutant burden in small streams. <i>Science of the Total Environment</i> , 2017 , 576, 785-795	10.2	108
111	Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources. <i>Science of the Total Environment</i> , 2017 , 576, 720-737	10.2	196
110	Mixture toxicity effects of sea louse control agents in Daphnia magna. <i>Chemosphere</i> , 2016 , 144, 599-600	6 8.4	6
109	Mixture toxicity of water contaminants-effect analysis using the zebrafish embryo assay (Danio rerio). <i>Chemosphere</i> , 2016 , 152, 503-12	8.4	18
108	Micropollutants in European rivers: A mode of action survey to support the development of effect-based tools for water monitoring. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 1887-99	3.8	118
107	Use of a combined effect model approach for discriminating between ABCB1- and ABCC1-type efflux activities in native bivalve gill tissue. <i>Toxicology and Applied Pharmacology</i> , 2016 , 297, 56-67	4.6	9
106	Time-Dependent Effects in Algae for Chemicals with Different Adverse Outcome Pathways: A Novel Approach. <i>Environmental Science & Environmental Scienc</i>	10.3	7
105	Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test. <i>Chemosphere</i> , 2016 , 164, 164-173	8.4	52
104	Differential sensitivity in embryonic stages of the zebrafish (Danio rerio): The role of toxicokinetics for stage-specific susceptibility for azinphos-methyl lethal effects. <i>Aquatic Toxicology</i> , 2015 , 166, 36-41	5.1	26
103	Metabolic Effect Level Index Links Multivariate Metabolic Fingerprints to Ecotoxicological Effect Assessment. <i>Environmental Science & Environmental S</i>	10.3	22
102	Pollution-Induced Community Tolerance To Diagnose Hazardous Chemicals in Multiple Contaminated Aquatic Systems. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	13
101	Identification and Characterization of Androgen-Responsive Genes in Zebrafish Embryos. <i>Environmental Science & Environmental </i>	10.3	34
100	The SOLUTIONS project: challenges and responses for present and future emerging pollutants in land and water resources management. <i>Science of the Total Environment</i> , 2015 , 503-504, 22-31	10.2	149
99	High-throughput concentration-response analysis for omics datasets. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 2167-80	3.8	27
98	A toxicokinetic study of specifically acting and reactive organic chemicals for the prediction of internal effect concentrations in Scenedesmus vacuolatus. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 100-11	3.8	8
97	Future water quality monitoringadapting tools to deal with mixtures of pollutants in water resource management. <i>Science of the Total Environment</i> , 2015 , 512-513, 540-551	10.2	198
96	Alginate/silica hybrid materials for immobilization of green microalgae Chlorella vulgaris for cell-based sensor arrays. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 7896-7909	7.3	37

(2010-2014)

95	Comparative assessment of plant protection products: how many cases will regulatory authorities have to answer?. <i>Environmental Sciences Europe</i> , 2014 , 26, 11	5	3
94	Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. <i>Environmental Science & Environmental </i>	10.3	295
93	First evidence for toxic defense based on the multixenobiotic resistance (MXR) mechanism in Daphnia magna. <i>Aquatic Toxicology</i> , 2014 , 148, 139-51	5.1	37
92	Proposal for applying a component-based mixture approach for ecotoxicological assessment of fracturing fluids. <i>Environmental Earth Sciences</i> , 2013 , 70, 3907-3920	2.9	21
91	Proposal for environmental mixture risk assessment in the context of the biocidal product authorization in the EU. <i>Environmental Sciences Europe</i> , 2013 , 25,	5	19
90	Simplifying complexity: Mixture toxicity assessment in the last 20 years. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 1685-7	3.8	91
89	The internal concentration of organic substances in fish embryosa toxicokinetic approach. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 1819-27	3.8	48
88	Multiple stressors in periphyton L'omparison of observed and predicted tolerance responses to high ionic loads and herbicide exposure. <i>Journal of Applied Ecology</i> , 2013 , 50, 1459-1468	5.8	22
87	Most oxidative stress response in water samples comes from unknown chemicals: the need for effect-based water quality trigger values. <i>Environmental Science & Environmental S</i>	10.3	144
86	Effect propagation in a toxicokinetic/toxicodynamic model explains delayed effects on the growth of unicellular green algae Scenedesmus vacuolatus. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 1161-72	3.8	11
85	Concentration-response concept in ecotoxicoproteomics: effects of different phenanthrene concentrations to the zebrafish (Danio rerio) embryo proteome. <i>Ecotoxicology and Environmental Safety</i> , 2012 , 76, 11-22	7	37
84	Mixture toxicity revisited from a toxicogenomic perspective. <i>Environmental Science & Environmental Sc</i>	10.3	114
83	Additive pressures of elevated sea surface temperatures and herbicides on symbiont-bearing foraminifera. <i>PLoS ONE</i> , 2012 , 7, e33900	3.7	33
82	Active bio-monitoring of contamination in aquatic systemsan in situ translocation experiment applying the PICT concept. <i>Aquatic Toxicology</i> , 2011 , 101, 228-36	5.1	49
81	Using the fish plasma model for comparative hazard identification for pharmaceuticals in the environment by extrapolation from human therapeutic data. <i>Regulatory Toxicology and Pharmacology</i> , 2011 , 61, 261-75	3.4	40
80	A non-invasive observation parameter to complement sediment bioassays using Myriophyllum aquaticum. <i>Journal of Soils and Sediments</i> , 2011 , 11, 1419-1431	3.4	1
79	Understanding combined effects for metal co-exposure in ecotoxicology. <i>Metal Ions in Life Sciences</i> , 2011 , 8, 1-26	2.6	2
78	Proteomic Signatures of the Zebrafish (Danio rerio) Embryo: Sensitivity and Specificity in Toxicity Assessment of Chemicals. <i>International Journal of Proteomics</i> , 2010 , 2010, 630134		20

77	1:Understanding Combined Effects for Metal Co-Exposure in Ecotoxicology. <i>Metal Ions in Life Sciences</i> , 2010 , 1-26		1
76	Anchoring metabolic changes to phenotypic effects in the chlorophyte Scenedesmus vacuolatus under chemical exposure. <i>Marine Environmental Research</i> , 2010 , 69 Suppl, S28-30	3.3	12
75	Uptake and toxicity of hexafluoroarsenate in aquatic organisms. Chemosphere, 2010, 78, 307-12	8.4	5
74	Proposing a pH stabilised nutrient medium for algal growth bioassays. <i>Chemosphere</i> , 2010 , 78, 864-70	8.4	12
73	Application of nd-SPME to determine freely dissolved concentrations in the presence of green algae and algae-water partition coefficients. <i>Chemosphere</i> , 2010 , 79, 1070-6	8.4	11
72	Chemicals in the Environment (CITE). Environmental Sciences Europe, 2010 , 22, 502-506		2
71	Identification of a phytotoxic photo-transformation product of diclofenac using effect-directed analysis. <i>Environmental Pollution</i> , 2010 , 158, 1461-6	9.3	61
70	Toxicity from Combined Exposure to Chemicals 2010 , 95-119		5
69	A metabolomics approach to assessing phytotoxic effects on the green alga Scenedesmus vacuolatus. <i>Metabolomics</i> , 2009 , 5, 59-71	4.7	35
68	Photostability and phytotoxicity of selected sunscreen agents and their degradation mixtures in water. <i>Analytical and Bioanalytical Chemistry</i> , 2009 , 395, 1513-24	4.4	139
67	Effect-directed analysis of sediment-associated algal toxicants at selected hot spots in the river Elbe basin with a special focus on bioaccessibility. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 1506-17	3.8	28
66	Effect-directed analysis of contaminated sediments with partition-based dosing using green algae cell multiplication inhibition. <i>Environmental Science & Environmental Scienc</i>	10.3	48
65	Partitioning-based dosing: an approach to include bioavailability in the effect-directed analysis of contaminated sediment samples. <i>Environmental Science & Environmental Sci</i>	10.3	54
64	A novel in vitro system for the determination of bioconcentration factors and the internal dose in zebrafish (Danio rerio) eggs. <i>Chemosphere</i> , 2009 , 77, 928-33	8.4	30
63	Extrapolation concepts for dealing with multiple contamination in environmental risk assessment. <i>Integrated Environmental Assessment and Management</i> , 2009 , 5, 62-8	2.5	56
62	Pollution-induced community tolerance as a measure of species interaction in toxicity assessment. Journal of Applied Ecology, 2008 , 45, 1514-1522	5.8	72
61	Teasing apart activities of different types of ABC efflux pumps in bivalve gills using the concepts of independent action and concentration addition. <i>Marine Environmental Research</i> , 2008 , 66, 75-6	3.3	17
60	Community-level microalgal toxicity assessment by multiwavelength-excitation PAM fluorometry. <i>Aquatic Toxicology</i> , 2008 , 86, 49-58	5.1	78

59	What contributes to the sensitivity of microalgae to triclosan?. Aquatic Toxicology, 2008, 90, 102-8	5.1	99
58	Bioassays with unicellular algae: deviations from exponential growth and its implications for toxicity test results. <i>Journal of Environmental Quality</i> , 2008 , 37, 16-21	3.4	17
57	Oxygen decline in biotesting of environmental samplesis there a need for consideration in the acute zebrafish embryo assay?. <i>Environmental Toxicology</i> , 2008 , 23, 745-50	4.2	19
56	How to deal with lipophilic and volatile organic substances in microtiter plate assays. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 1676	3.8	57
55	Mixture Extrapolation Approaches 2008 , 135-186		4
54	Combined effects of mycotoxin mixtures on human T cell function. <i>Toxicology Letters</i> , 2007 , 170, 124-33	34.4	30
53	Vitellogenin cleavage products as indicators for toxic stress in zebra fish embryos: a proteomic approach. <i>Proteomics</i> , 2007 , 7, 4541-54	4.8	46
52	Flow cytometry as a tool to study phytotoxic modes of action. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 297-306	3.8	41
51	A fluorescence-based bioassay for aquatic macrophytes and its suitability for effect analysis of non-photosystem II inhibitors. <i>Environmental Science and Pollution Research</i> , 2007 , 14, 377-83	5.1	20
50	Phytotoxicity assessment of diclofenac and its phototransformation products. <i>Analytical and Bioanalytical Chemistry</i> , 2007 , 387, 1389-96	4.4	109
49	The use of pulse-amplitude modulated (PAM) fluorescence-based methods to evaluate effects of herbicides in microalgal systems of different complexity. <i>Toxicological and Environmental Chemistry</i> , 2007 , 89, 665-681	1.4	19
48	Development and validation of a new fluorescence-based bioassay for aquatic macrophyte species. <i>Chemosphere</i> , 2007 , 67, 194-201	8.4	34
47	Physicochemical substance properties as indicators for unreliable exposure in microplate-based bioassays. <i>Chemosphere</i> , 2007 , 67, 2210-20	8.4	62
46	Suborganismic and organismic effects of aldicarb and its metabolite aldicarb-sulfoxide to the zebrafish embryo (Danio rerio). <i>Chemosphere</i> , 2007 , 68, 751-60	8.4	26
45	On the mode of action of N-phenyl-2-naphthylamine in plants. <i>Environmental Science & Environmental Science & Technology</i> , 2006 , 40, 6163-9	10.3	27
44	Structural alertsa new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay. <i>Chemical Research in Toxicology</i> , 2005 , 18, 536-	55	155
43	Modeling photoinduced algal toxicity of polycyclic aromatic hydrocarbons. <i>Environmental Science</i> & <i>amp; Technology</i> , 2005 , 39, 4141-9	10.3	53
42	Predicting and observing responses of algal communities to photosystem II-herbicide exposure using pollution-induced community tolerance and species-sensitivity distributions. <i>Environmental Toxicology and Chemistry</i> 2005 , 24, 304-12	3.8	73

41	Algal toxicity of nitrobenzenes: combined effect analysis as a pharmacological probe for similar modes of interaction. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 324-33	3.8	66
40	Confirmation of cause-effect relationships using effect-directed analysis for complex environmental samples. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 1420-7	3.8	31
39	Effects of hydrogen sulfide to Vibrio fischeri, Scenedesmus vacuolatus, and Daphnia magna. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 2621-9	3.8	18
38	Light as a confounding factor for toxicity assessment of complex contaminated sediments. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 3143-52	3.8	6
37	Toxic effects of isoproturon on periphyton communities has microcosm study. <i>Estuarine, Coastal and Shelf Science</i> , 2005 , 62, 539-545	2.9	63
36	Chemical and ecotoxicological assessment of polycyclic aromatic hydrocarboncontaminated sediments of the Niger Delta, Southern Nigeria. <i>Science of the Total Environment</i> , 2005 , 340, 123-36	10.2	86
35	Ecotoxicological Profiling of Transect River Elbe Sediments. Clean - Soil, Air, Water, 2005, 33, 555-569		12
34	Identification of toxicants from marine sediment using effect-directed analysis. <i>Environmental Toxicology</i> , 2005 , 20, 475-86	4.2	20
33	What contributes to the combined effect of a complex mixture?. <i>Environmental Science & Environmental </i>	10.3	235
32	On line biomonitors used as a tool for toxicity reduction evaluation of in situ groundwater remediation techniques. <i>Biosensors and Bioelectronics</i> , 2004 , 19, 1711-22	11.8	10
31	Biozflotisches Testverfahren (PICT-Konzept). Environmental Sciences Europe, 2004, 16, 85		3
3 0	Mixture toxicity and its modeling by quantitative structure-activity relationships. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 1900-15	3.8	288
29	Identification of toxic products of anthracene photomodification in simulated sunlight. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 2228-37	3.8	48
28	ToxizitEsreduktion durch (Grundwasser-) Sanierung?. <i>Grundwasser</i> , 2003 , 8, 32-40	1.1	
27	The BEAM-project: prediction and assessment of mixture toxicities in the aquatic environment. <i>Continental Shelf Research</i> , 2003 , 23, 1757-1769	2.4	100
26	Chapter 5 Predicting toxic effects of contaminants in ecosystems using single species investigations. <i>Trace Metals and Other Contaminants in the Environment</i> , 2003 , 6, 153-198		6
25	Combination Effect of Light and Toxicity in Algal Tests. <i>Journal of Environmental Quality</i> , 2002 , 31, 539-	-5 4 .7	7
24	Mixture toxicity of priority pollutants at no observed effect concentrations (NOECs). <i>Ecotoxicology</i> , 2002 , 11, 299-310	2.9	100

23	Hochwasser 2002. Environmental Sciences Europe, 2002, 14, 213-220		10
22	A general best-fit method for concentration-response curves and the estimation of low-effect concentrations. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 448-457	3.8	217
21	. Environmental Toxicology and Chemistry, 2001 , 20, 448	3.8	106
20	Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: Mixtures composed of similarly acting chemicals. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 2341-2347	3.8	317
19	Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 2348-2356	3.8	295
18	Quantitative structure-activity analysis of the algae toxicity of nitroaromatic compounds. <i>Chemical Research in Toxicology</i> , 2000 , 13, 441-50	4	69
17	Kombinationswirkungen von Umweltchemikalien in der Rotoxikologie. <i>Environmental Sciences Europe</i> , 2000 , 12, 226-234		5
16	. Environmental Toxicology and Chemistry, 2000 , 19, 2341	3.8	163
15	. Environmental Toxicology and Chemistry, 2000 , 19, 2348	3.8	154
14	Approaches to assessing combination effects of oestrogenic environmental pollutants. <i>Science of the Total Environment</i> , 1999 , 233, 131-40	10.2	56
13	Umweltchemie 1998. Nachrichten Aus Der Chemie, 1999, 47, 291-302		О
12	Synergisms with mixtures of xenoestrogens: a reevaluation using the method of isoboles. <i>Science of the Total Environment</i> , 1998 , 221, 59-73	10.2	120
11	Kombinationswirkungen in der aquatischen Toxikologie. <i>Environmental Sciences Europe</i> , 1996 , 8, 150-1	58	5
10	The mode of action of glufosinate in algae: The role of uptake and nitrogen assimilation pathways. <i>Pest Management Science</i> , 1995 , 45, 305-310		11
9	pH-Dependent sorption, bioconcentration and algal toxicity of sulfonylurea herbicides. <i>Aquatic Toxicology</i> , 1995 , 31, 175-187	5.1	64
8	Drinking water: for human consumption only? The amendment of directive 80/778/EEC parameter 55 in the light of aquatic toxicology. <i>Chemosphere</i> , 1995 , 30, 307-12	8.4	5
7	Cell physiological parameters to detect ecotoxicological risks. <i>Science of the Total Environment</i> , 1993 , 134, 741-748	10.2	3
6	Comparative hazard identification for pesticides: interrelations between physico-chemical		

5	Aquatic Toxicology, Analysis of Combination Effects 1993 , 15-27		16
4	In situ nuclear magnetic resonance of N pulse labels monitors different routes for nitrogen assimilation. <i>Plant Physiology</i> , 1992 , 100, 1584-6	6.6	16
3	Ammonia rhythm in Microcystis firma studied by in vivo 15N and 31P NMR spectroscopy. <i>Archives of Microbiology</i> , 1991 , 156, 471-476	3	13
2	Evaluation of the isobologram method for the assessment of mixtures of chemicals. Combination effect studies with pesticides in algal biotests. <i>Ecotoxicology and Environmental Safety</i> , 1990 , 20, 98-114	4 7	105
1	Biomarkers and PAHs Prospects for the Assessment of Exposure and Effects in Aquatic Systems297-32	28	5