
Akira Yamawo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8583475/publications.pdf Version: 2024-02-01

Δείδα Υλμανισ

#	Article	IF	CITATIONS
1	Leaf ageing promotes the shift in defence tactics in <i>Mallotus japonicus</i> from direct to indirect defence. Journal of Ecology, 2012, 100, 802-809.	4.0	37
2	Different combinations of multiple defence traits in an extrafloral nectaryâ€bearing plant growing under various habitat conditions. Journal of Ecology, 2014, 102, 238-247.	4.0	34
3	Intraspecific Adaptation Load: A Mechanism for Species Coexistence. Trends in Ecology and Evolution, 2020, 35, 897-907.	8.7	27
4	Relatedness of Neighboring Plants Alters the Expression of Indirect Defense Traits in an Extrafloral Nectary-Bearing Plant. Evolutionary Biology, 2015, 42, 12-19.	1.1	25
5	Effects of light on direct and indirect defences against herbivores of young plants of Mallotus japonicus demonstrate a trade-off between two indirect defence traits. Annals of Botany, 2010, 106, 143-148.	2.9	24
6	Variations in direct and indirect defenses against herbivores on young plants of Mallotus japonicus in relation to soil moisture conditions. Journal of Plant Research, 2012, 125, 71-76.	2.4	22
7	Plasticity in the expression of direct and indirect defence traits of young plants of Mallotus japonicus in relation to soil nutritional conditions. Plant Ecology, 2012, 213, 127-132.	1.6	17
8	Experimental evidence for benefit of self discrimination in roots of a clonal plant. AoB PLANTS, 2017, 9, .	2.3	17
9	Ant-Attendance in Extrafloral Nectar-Bearing Plants Promotes Growth and Decreases the Expression of Traits Related to Direct Defenses. Evolutionary Biology, 2015, 42, 191-198.	1.1	14
10	Competitive responses based on kin-discrimination underlie variations in leaf functional traits in Japanese beech (Fagus crenata) seedlings. Evolutionary Ecology, 2019, 33, 521-531.	1.2	14
11	Adaptive Advantage of Myrmecochory in the Ant-Dispersed Herb Lamium amplexicaule (Lamiaceae): Predation Avoidance through the Deterrence of Post-Dispersal Seed Predators. PLoS ONE, 2015, 10, e0133677.	2.5	12
12	Plasticity and Efficacy of Defense Strategies against Herbivory in Ant-Visited Plants Growing in Variable Abiotic Conditions. , 2017, , 159-178.		12
13	Seeds integrate biological information about conspecific and allospecific neighbours. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170800.	2.6	11
14	Outcome of interspecific competition depends on genotype of conspecific neighbours. Oecologia, 2020, 193, 415-423.	2.0	10
15	Induction and relaxation of extrafloral nectaries in response to simulated herbivory in young Mallotus japonicus plants. Journal of Plant Research, 2018, 131, 255-260.	2.4	9
16	Extrafloral nectary-bearing plant Mallotus japonicus uses different types of extrafloral nectaries to establish effective defense by ants. Journal of Plant Research, 2019, 132, 499-507.	2.4	8
17	Aggressiveness of ants attracted to the extrafloral nectaryâ€bearing plant, <i>Mallotus japonicus</i> , and temporal fluctuations in their abundance. Entomological Science, 2017, 20, 150-155.	0.6	7
18	Assessing temporal dynamics of predation and effectiveness of caterpillar visual defense using sawfly larval color and resting posture as a model. Insect Science, 2021, 28, 1800-1815.	3.0	6

Akira Yamawo

#	Article	IF	CITATIONS
19	Intraspecific competition favors ant–plant protective mutualism. Plant Species Biology, 2021, 36, 372-378.	1.0	6
20	Two <scp><i>Mallotus </i></scp> species of different life histories adopt different defense strategies in relation to leaf age. Plant Species Biology, 2014, 29, 152-158.	1.0	4
21	Damage to leaf veins suppresses root foraging precision. American Journal of Botany, 2019, 106, 1126-1130.	1.7	4
22	Self-discrimination in vine tendrils of different plant families. Plant Signaling and Behavior, 2018, 13, e1451710.	2.4	3
23	Aboveground plant-to-plant communication reduces root nodule symbiosis and soil nutrient concentrations. Scientific Reports, 2021, 11, 12675.	3.3	3
24	Species diversity and biological trait function: Effectiveness of ant–plant mutualism decreases as ant species diversity increases. Functional Ecology, 2021, 35, 2012-2025.	3.6	3
25	Intraspecific interaction of host plants leads to concentrated distribution of a specialist herbivore through metabolic alterations in the leaves. Functional Ecology, 2022, 36, 779-793.	3.6	3
26	Concentration and retention of chlorophyll around the extrafloral nectary of <i>Mallotus japonicus</i> . Ecology and Evolution, 2017, 7, 3987-3991.	1.9	2
27	Elaborate mating dances: Multimodal courtship displays in jewel bugs. Ecology, 2022, 103, e3632.	3.2	2
28	Leaf damage effects on leaf expansion timing in <i><scp>M</scp>allotus japonicus</i> (<scp>E</scp> uphorbiaceae). Plant Species Biology, 2016, 31, 141-147.	1.0	1
29	Seed dispersal by the omnivorous ant Tetramorium tsushimae Emery (Formicidae) in three common weed species. Arthropod-Plant Interactions, 2020, 14, 251-261.	1.1	1
30	Night interruption provides evidence for photoperiodic regulation of bud burst in Japanese beech, <i>Fagus crenata</i> . Plant Signaling and Behavior, 2021, 16, 1982562.	2.4	1
31	Functional roles of ants in a temperate grassland. Die Naturwissenschaften, 2021, 108, 56.	1.6	0
32	Effects of indirect plant–plant interaction via root exudate on growth and leaf chemical contents in <i>Rumex obtusifolius</i> . Plant Signaling and Behavior, 2022, 17, 2050628.	2.4	0
33	Hierarchical Multimodal Signals in the Courtship Displays of Jewel Bugs. Bulletin of the Ecological Society of America, 2022, 103, .	0.2	Ο