
Agnieszka Kosińska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8583214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenolic compounds identified in apricot branch tissues and their role in the control of Monilinia laxa growth. Scientia Horticulturae, 2021, 275, 109707.	1.7	6
2	Goji Berry and Whey Protein Concentrate Enriched Rice Extrudates - Physical Properties and Accessibility of Bioactives. Polish Journal of Food and Nutrition Sciences, 2021, , 29-37.	0.6	1
3	Phenolic compounds of grape stems and their capacity to precipitate proteins from model wine. Journal of Food Science and Technology, 2020, 57, 435-443.	1.4	9
4	Amber ale beer enriched with goji berries – The effect on bioactive compound content and sensorial properties. Food Chemistry, 2017, 226, 109-118.	4.2	91
5	Stability of goji bioactives during extrusion cooking process. Food Chemistry, 2017, 230, 250-256.	4.2	19
6	Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chemistry, 2017, 221, 969-975.	4.2	115
7	Bioactive compound profile and antioxidant activity of fruits from six goji cultivars cultivated in Switzerland. Journal of Berry Research, 2017, 7, 43-59.	0.7	21
8	Use of Different Proteases to Obtain Flaxseed Protein Hydrolysates with Antioxidant Activity. International Journal of Molecular Sciences, 2016, 17, 1027.	1.8	77
9	Effect of flaxseed supplementation of dairy cows' forage on physicochemical characteristic of milk and Raclette cheese. International Journal of Dairy Technology, 2016, 69, 129-136.	1.3	8
10	Identification of bioaccessible and uptaken phenolic compounds from strawberry fruits in in vitro digestion/Caco-2 absorption model. Food Chemistry, 2015, 170, 288-294.	4.2	69
11	Fermentation of Plant Material – Effect on Sugar Content and Stability of Bioactive Compounds. Polish Journal of Food and Nutrition Sciences, 2014, 64, 235-241.	0.6	14
12	Separation and Characterization of Soluble Esterified and Glycoside-Bound Phenolic Compounds in Dry-Blanched Peanut Skins by Liquid Chromatography–Electrospray Ionization Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2014, 62, 11488-11504.	2.4	33
13	Antioxidant Capacity of Tea. , 2014, , 109-120.		28
14	Separation and characterization of phenolic compounds from dry-blanched peanut skins by liquid chromatography–electrospray ionization mass spectrometry. Journal of Chromatography A, 2014, 1356, 64-81.	1.8	86
15	Modulation of tight junction integrity by food components. Food Research International, 2013, 54, 951-960.	2.9	55
16	Milk enhances intestinal absorption of green tea catechins in in vitro digestion/Caco-2 cells model. Food Research International, 2013, 53, 793-800.	2.9	79
17	Phenolic compounds profile of strawberry fruits of Charlotte cultivar. Journal of Berry Research, 2013, 3, 15-23.	0.7	19
18	Stability of Phenolic Compounds Isolated from Cocoa, Green Tea and Strawberries in Hank's Balanced Salt Solution under Cell Culture Conditions Polish Journal of Food and Nutrition Sciences, 2012, 62, 91-96.	0.6	19

Agnieszka Kosińska

#	Article	IF	CITATIONS
19	Cocoa polyphenols are absorbed in Caco-2 cell model of intestinal epithelium. Food Chemistry, 2012, 135, 999-1005.	4.2	39
20	Phenolic Compound Profiles and Antioxidant Capacity of <i>Persea americana</i> Mill. Peels and Seeds of Two Varieties. Journal of Agricultural and Food Chemistry, 2012, 60, 4613-4619.	2.4	138
21	Antioxidant activity of phenolic compounds identified in sunflower seeds. European Food Research and Technology, 2012, 235, 221-230.	1.6	67
22	Presence of Caffeic Acid in Flaxseed Lignan Macromolecule. Plant Foods for Human Nutrition, 2011, 66, 270-274.	1.4	26
23	Interactions between tannins and proteins isolated from broad bean seeds (Vicia faba Major) yield soluble and non-soluble complexes. European Food Research and Technology, 2011, 233, 213-222.	1.6	55
24	SE-HPLC-DAD Analysis of Flaxseed Lignan Macromolecule and its Hydrolysates. Polish Journal of Food and Nutrition Sciences, 2011, 61, 263-271.	0.6	4
25	Phenolic compounds and properties of antioxidants in grapevine roots (Vitis vinifera L.) under low-temperature stress followed by recovery. Acta Societatis Botanicorum Poloniae, 2011, 78, 279-286.	0.8	31
26	Effect of osmotic stress and post-stress recovery on the content of phenolics and properties of antioxidants in germinating seeds of grapevine Vitis californica. Acta Societatis Botanicorum Poloniae, 2011, 80, 11-19.	0.8	14
27	Antioxidant Properties of Extracts Obtained from Raw, Dry-roasted, and Oil-roasted US Peanuts of Commercial Importance. Plant Foods for Human Nutrition, 2010, 65, 311-318.	1.4	41
28	Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens) Tj ETQq0 0	0 rgBT /O\ 4:2	verlock 10 Tf 171
29	The impact of copper ions on growth, lipid peroxidation, and phenolic compound accumulation and localization in lentil (Lens culinaris Medic.) seedlings. Journal of Plant Physiology, 2010, 167, 270-276.	1.6	62
30	Antioxidant Activity of a Red Lentil Extract and Its Fractions. International Journal of Molecular Sciences, 2009, 10, 5513-5527.	1.8	98
31	Antioxidant activity and free radicalâ€scavenging capacity of ethanolic extracts of thyme, oregano, and marjoram. European Journal of Lipid Science and Technology, 2009, 111, 1111-1117.	1.0	36
32	Induction of phenolic compounds in two dark-grown lentil cultivars with different tolerance to copper ions. Acta Physiologiae Plantarum, 2009, 31, 587-595.	1.0	38
33	Antioxidant Activity of Hazelnut Skin Phenolics. Journal of Agricultural and Food Chemistry, 2009, 57, 4645-4650.	2.4	133
34	RELATION BETWEEN SENSORY ASTRINGENCY OF EXTRACTS FROM SELECTED TANNIN-RICH FOODS AND THEIR ANTIOXIDANT ACTIVITY. Journal of Food Lipids, 2008, 15, 28-41.	0.9	6
35	ANTIOXIDANT ACTIVITY OF EXTRACTS OF <i>MALLOTUS PHILIPPINENSIS</i> FRUIT AND BARK. Journal of Food Lipids, 2007, 14, 280-297.	0.9	14