Wolfgang Friedt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8583205/publications.pdf Version: 2024-02-01

		94269	118652
120	4,788	37	62
papers	citations	h-index	g-index
127	127	127	4957
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	New Syntheses with Oils and Fats as Renewable Raw Materials for the Chemical Industry. Angewandte Chemie - International Edition, 2000, 39, 2206-2224.	7.2	653
2	Breeding improves wheat productivity under contrasting agrochemical input levels. Nature Plants, 2019, 5, 706-714.	4.7	194
3	Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica, 2009, 170, 131.	0.6	180
4	Strategies for Pyramiding Resistance Genes Against the Barley Yellow Mosaic Virus Complex (BaMMV,) Tj ETQq0	0 0 rgBT / 1.0	Overlock 101 121
5	Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theoretical and Applied Genetics, 2010, 121, 323-336.	1.8	118
6	VERNALIZATION1 Modulates Root System Architecture in Wheat and Barley. Molecular Plant, 2018, 11, 226-229.	3.9	118
7	Jasmonate and ethylene dependent defence gene expression and suppression of fungal virulence factors: two essential mechanisms of Fusarium head blight resistance in wheat?. BMC Genomics, 2012, 13, 369.	1.2	113
8	Subgenomic Diversity Patterns Caused by Directional Selection in Bread Wheat Gene Pools. Plant Genome, 2015, 8, eplantgenome2015.03.0013.	1.6	105
9	High resolution mass spectrometry imaging of plant tissues: towards a plant metabolite atlas. Analyst, The, 2015, 140, 7696-7709.	1.7	91
10	Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome, 2006, 49, 1499-1509.	0.9	86
11	Genetics of mycorrhizal symbiosis in winter wheat (<i>Triticum aestivum</i>). New Phytologist, 2017, 215, 779-791.	3.5	76
12	Characterisation of plant tocopherol cyclases and their overexpression in transgenicBrassica napusseeds. FEBS Letters, 2005, 579, 1357-1364.	1.3	75
13	QTL for fibre-related traits in grainÂ×Âsweet sorghum as a tool for the enhancement of sorghum as a biomass crop. Theoretical and Applied Genetics, 2011, 123, 999-1011.	1.8	66
14	Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Scientific Reports, 2015, 5, 14407.	1.6	65
15	Highâ€ŧhroughput genomics in sorghum: from wholeâ€genome resequencing to a <scp>SNP</scp> screening array. Plant Biotechnology Journal, 2013, 11, 1112-1125.	4.1	63
16	A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds. Theoretical and Applied Genetics, 2012, 124, 1573-1586.	1.8	61
17	A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus). Frontiers in Plant Science, 2012, 3, 129.	1.7	58

18Increase of the tocochromanol content in transgenic Brassica napus seeds by overexpression of key
enzymes involved in prenylquinone biosynthesis. Molecular Breeding, 2006, 18, 93-107.1.057

#	Article	IF	CITATIONS
19	Unravelling the genetic complexity of sorghum seedling development under lowâ€ŧemperature conditions. Plant, Cell and Environment, 2014, 37, 707-723.	2.8	56
20	Recent developments and perspectives of industrial rapeseed breeding. Lipid - Fett, 1998, 100, 219-226.	0.6	54
21	Genotypic and exogenous factors affecting shoot regeneration from anther callus of linseed (Linum) Tj ETQq1 :	1 0.784314 0.6	rgBT /Overlo
22	Seed longevity in oilseed rape (<i>Brassica napus</i> L.) – genetic variation and QTL mapping. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 260-263.	0.4	52
23	Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Science, 2008, 175, 226-232.	1.7	51
24	Intraspecific diversity and relationship between subspecies of Origanum vulgare revealed by comparative AFLP and SAMPL marker analysis. Plant Systematics and Evolution, 2009, 281, 151-160.	0.3	49
25	High-resolution mapping of the Rym4/Rym5 locus conferring resistance to the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2) in barley (Hordeum vulgare ssp. vulgare L.). Theoretical and Applied Genetics, 2005, 110, 283-293.	1.8	48
26	Molecular assessment of genetic diversity in winter barley and its use in breeding. Euphytica, 2005, 146, 21-28.	0.6	48
27	Genome-Wide Association Studies Reveal Genomic Regions Associated With the Response of Wheat (Triticum aestivum L.) to Mycorrhizae Under Drought Stress Conditions. Frontiers in Plant Science, 2018, 9, 1728.	1.7	48
28	Dissection of a major <scp>QTL</scp> for seed colour and fibre content in <i>Brassica napus</i> reveals colocalization with candidate genes for phenylpropanoid biosynthesis and flavonoid deposition. Plant Breeding, 2013, 132, 382-389.	1.0	46
29	Transfer of sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Theoretical and Applied Genetics, 2015, 128, 639-644.	1.8	46
30	PCR-Based Markers Facilitating Marker Assisted Selection in Sunflower for Resistance to Downy Mildew. Crop Science, 2000, 40, 676-682.	0.8	45
31	Interspecific hybrids of sunflower as a source of Sclerotinia resistance. Plant Breeding, 2004, 123, 152-157.	1.0	45
32	The CMS-associated 16 kDa protein encoded by orfH522 in the PET1 cytoplasm is also present in other male-sterile cytoplasms of sunflower. Plant Molecular Biology, 1996, 30, 523-538.	2.0	43
33	Identification of QTLs for phenolic compounds in oilseed rape (Brassica napus L.) by association mapping using SSR markers. Euphytica, 2011, 177, 335-342.	0.6	43
34	Identification of marker-trait associations in the German winter barley breeding gene pool (Hordeum) Tj ETQq0	0 0 ₁₉ BT /C)verlock 10 Tf
35	New NIRS Calibrations for Fiber Fractions Reveal Broad Genetic Variation in Brassica napus Seed Quality Journal of Agricultural and Food Chemistry, 2012, 60, 2248-2256	2.4	42

Insights Into <i>Triticum aestivum</i> Seedling Root Rot Caused by <i>Fusarium graminearum</i> 1.4
Molecular Plant-Microbe Interactions, 2015, 28, 1288-1303.

#	Article	IF	CITATIONS
37	Correlations between Genetic, Morphological, and Chemical Diversities in a Germplasm Collection of the Medicinal Plant <i>Origanum vulgare</i> L Chemistry and Biodiversity, 2012, 9, 2784-2801.	1.0	40
38	Genetic analysis of phenylpropanoid metabolites associated with resistance against Verticillium longisporum in Brassica napus. Molecular Breeding, 2013, 31, 347-361.	1.0	40
39	High-resolution mapping of rachis nodes per rachis, a critical determinant of grain yield components in wheat. Theoretical and Applied Genetics, 2019, 132, 2707-2719.	1.8	40
40	Complementary diversity for nitrogen uptake and utilisation efficiency reveals broad potential for increased sustainability of oilseed rape production. Plant and Soil, 2016, 400, 245-262.	1.8	39
41	Academic and Economic Importance of Brassica napus Rapeseed. Compendium of Plant Genomes, 2018, , 1-20.	0.3	39
42	Genetic relatedness and population differentiation of Himalayan hulless barley (Hordeum vulgare L.) landraces inferred with SSRs. Theoretical and Applied Genetics, 2006, 113, 715-729.	1.8	38
43	New Oilseed Rape (<i>Brassica napus</i>) Hybrids with High Levels of Heterosis for Seed Yield under Nutrient-poor Conditions. Breeding Science, 2007, 57, 315-320.	0.9	37
44	Oilseed Rape. , 2009, , 91-126.		37
45	Chemical and Genetic Diversity of <i>Zataria multiflora</i> <scp>Boiss</scp> . Accessions Growing Wild in Iran. Chemistry and Biodiversity, 2011, 8, 176-188.	1.0	37
46	NAPUS 2000. Rapeseed (Brassica napus) breeding for improved human nutrition. Food Research International, 2002, 35, 273-278.	2.9	36
47	Genetic Variation in Sorghum Germplasm from Sudan, ICRISAT, and USA Assessed by Simple Sequence Repeats (SSRs). Crop Science, 2005, 45, 1636-1644.	0.8	36
48	Oilseed Rape. , 2007, , 55-114.		33
49	Molecular mapping of the fertility restoration locus Rf1 in sunflower and development of diagnostic markers for the restorer gene. Euphytica, 2005, 143, 35-42.	0.6	31
50	Molecular analyses on the genetic diversity and inheritance of (â^')-α-bisabolol and chamazulene content in tetraploid chamomile (Chamomilla recutita (L.) Rausch.). Plant Science, 2005, 169, 917-927.	1.7	31
51	Seedling development in a Brassica napus diversity set and its relationship to agronomic performance. Theoretical and Applied Genetics, 2012, 125, 1275-1287.	1.8	30
52	A transmitting tissue- and pollen-expressed protein from sunflower with sequence similarity to the human RTP protein. Plant Science, 1997, 129, 191-202.	1.7	29
53	Quantitative structure analysis of genetic diversity among spring bread wheats (Triticum aestivum L.) from different geographical regions. Genetica, 2007, 130, 213-225.	0.5	28
54	Genomics-based high-resolution mapping of the BaMMV/BaYMV resistance gene rym11 in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2013, 126, 1201-1212.	1.8	28

#	Article	IF	CITATIONS
55	Designing adapted sorghum silage types with an enhanced energy density for biogas generation in temperate Europe. Biomass and Bioenergy, 2015, 81, 496-504.	2.9	28
56	Plant regeneration from isolated microspores of linseed (Linum usitatissimum L.). Plant Cell Reports, 1993, 12-12, 426-30.	2.8	27
57	The complex quantitative barley–Rhynchosporium secalis interaction: newly identified QTL may represent already known resistance genes. Theoretical and Applied Genetics, 2008, 118, 113-122.	1.8	27
58	Disruption of Germination and Seedling Development in Brassica napus by Mutations Causing Severe Seed Hormonal Imbalance. Frontiers in Plant Science, 2016, 7, 322.	1.7	27
59	Plant Breeding: Assessment of Genetic Diversity in Crop Plants and its Exploitation in Breeding. Progress in Botany Fortschritte Der Botanik, 2007, , 151-178.	0.1	26
60	Wheat Resistances to Fusarium Root Rot and Head Blight Are Both Associated with Deoxynivalenol- and Jasmonate-Related Gene Expression. Phytopathology, 2018, 108, 602-616.	1.1	26
61	Molecular markers in breeding for virus resistance in barley. Journal of Applied Genetics, 2004, 45, 145-59.	1.0	26
62	Genetic dissection of the temperature dependent emergence processes in sorghum using a cumulative emergence model and stability parameters. Theoretical and Applied Genetics, 2012, 125, 1647-1661.	1.8	25
63	Molecular Markers for Gene Pyramiding and Disease Resistance Breeding in Barley. , 2007, , 81-101.		24
64	High regeneration rates in anther culture of interspecific sunflower hybrids. Plant Cell Reports, 1996, 16, 167-173.	2.8	23
65	Fine-mapping of the BaMMV, BaYMV-1 and BaYMV-2 resistance of barley (Hordeum vulgare) accession PI1963. Theoretical and Applied Genetics, 2005, 110, 212-218.	1.8	23
66	Genetic modification of saturated fatty acids in oilseed rape (Brassica napus). European Journal of Lipid Science and Technology, 2005, 107, 244-248.	1.0	22
67	Quantitative genetic analysis of condensed tannins in oilseed rape meal. Euphytica, 2012, 184, 195-205.	0.6	21
68	Breeding progress for pathogen resistance is a second major driver for yield increase in German winter wheat at contrasting N levels. Scientific Reports, 2020, 10, 20374.	1.6	21
69	Recombination: Molecular Markers for Resistance Genes in Major Grain Crops. Progress in Botany Fortschritte Der Botanik, 1998, , 49-79.	0.1	20
70	Breeding high-stearic oilseed rape (Brassica napus) with high- and low-erucic background using optimised promoter-gene constructs. Molecular Breeding, 2006, 18, 241-251.	1.0	19
71	Localisation and combination of resistance genes against soil-borne viruses of barley (BaMMV, BaYMV) using doubled haploids and molecular markers. Euphytica, 2007, 158, 323-329.	0.6	19
72	Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus. BMC Genomics, 2009, 10, 295.	1.2	19

#	Article	IF	CITATIONS
73	Association of allelic variation in two NPR1-like genes with Fusarium head blight resistance in wheat. Molecular Breeding, 2014, 34, 31-43.	1.0	19
74	Genetic insights into underground responses to Fusarium graminearum infection in wheat. Scientific Reports, 2018, 8, 13153.	1.6	18
75	Genetic analyses of the host-pathogen system Turnip yellows virus (TuYV)—rapeseed (Brassica napus L.) and development of molecular markers for TuYV-resistance. Theoretical and Applied Genetics, 2010, 120, 735-744.	1.8	17
76	Construction and characterization of a BAC library for sunflower (Helianthus annuus L.). Euphytica, 2004, 138, 177-183.	0.6	16
77	Undesired fertility restoration in msm1 barley associates with two mTERF genes. Theoretical and Applied Genetics, 2019, 132, 1335-1350.	1.8	16
78	A saturated SNP linkage map for the orange wheat blossom midge resistance gene Sm1. Theoretical and Applied Genetics, 2016, 129, 1507-1517.	1.8	15
79	Title is missing!. Euphytica, 2000, 116, 271-280.	0.6	14
80	Resistance to Sclerotinia sclerotiorum of 'high oleic' sunflower inbred lines. Plant Breeding, 2005, 124, 376-381.	1.0	14
81	Genome-wide association studies of agronomic and quality traits in a set of German winter barley (Hordeum vulgare L.) cultivars using Diversity Arrays Technology (DArT). Journal of Applied Genetics, 2014, 55, 295-305.	1.0	14
82	Histology-guided high-resolution AP-SMALDI mass spectrometry imaging of wheat-Fusarium graminearum interaction at the root–shoot junction. Plant Methods, 2018, 14, 103.	1.9	14
83	Sorghum as a Novel Crop for Central Europe: Using a Broad Diversity Set to Dissect Temperate-Adaptation. Agronomy, 2019, 9, 535.	1.3	14
84	Assessment of tolerance to salt stress in Kenyan tomato germplasm. Euphytica, 1997, 95, 57-66.	0.6	13
85	High-resolution mapping of the barley Ryd3 locus controlling tolerance to BYDV. Molecular Breeding, 2014, 33, 477-488.	1.0	13
86	Development of Near-Infrared Reflection Spectroscopy Calibrations for Crude Protein and Dry Matter Content in Fresh and Dried Potato Tuber Samples. Potato Research, 2016, 59, 149-165.	1.2	13
87	Genetic dissection of root architectural traits by QTL andÂgenomeâ€wide association mapping in rapeseed (BrassicaÂnapus). Plant Breeding, 2019, 138, 184-192.	1.0	13
88	Quantitative trait locus analysis of seed germination, seedling vigour and seedlingâ€regulated hormones in <i>Brassica napus</i> . Plant Breeding, 2018, 137, 388-401.	1.0	11
89	Reduced response diversity does not negatively impact wheat climate resilience. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10623-10624.	3.3	11
90	Analysis of the Genetic Diversity and Affinities of Different Iranian <i>Satureja</i> Species Based on SAMPL Markers. Planta Medica, 2010, 76, 1927-1933.	0.7	10

#	Article	IF	CITATIONS
91	Genetic mapping of the stem rust (Puccinia graminis f. sp. tritici Eriks. & E. Henn) resistance gene Sr13 in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 122, 643-648.	1.8	10
92	Agronomic traits of exotic barley germplasms resistant to soil-borne mosaic-inducing viruses. Genetic Resources and Crop Evolution, 1994, 41, 43-46.	0.8	9
93	Molecular diversity of CMS sources and fertility restoration in the genus: Helianthus. Helia, 2002, 25, 29-40.	0.0	9
94	Expression analysis of the sunflower SF21 gene family reveals multiple alternative and organ-specific splicing of transcripts. Gene, 2006, 374, 77-86.	1.0	9
95	Towards Enhancement of Earlyâ€ S tage Chilling Tolerance and Root Development in Sorghum F1 Hybrids. Journal of Agronomy and Crop Science, 2017, 203, 146-160.	1.7	9
96	New insights into genotypic thermodependency of cytoplasmic male sterility for hybrid barley breeding. Plant Breeding, 2017, 136, 8-17.	1.0	9
97	Heterosis for Biomass and Grain Yield Facilitates Breeding of Productive Dualâ€Purpose Winter Barley Hybrids. Crop Science, 2017, 57, 2405-2418.	0.8	9
98	Mapping of the restorer gene Rf1 in sunflower (Helianthus annuus L). Helia, 2002, 25, 41-46.	0.0	8
99	Knockout of KASIII regulation changes fatty acid composition in canola (Brassica napus). European Journal of Lipid Science and Technology, 2006, 108, 277-286.	1.0	8
100	Genetic Characterization of <i>Puccinia graminis</i> f.sp. <i>tritici</i> Populations from Ethiopia by SSRs. Journal of Phytopathology, 2010, 158, 806-812.	0.5	8
101	Diagnostic value of molecular markers linked to the eyespot resistance gene Pch1 in wheat. Euphytica, 2011, 177, 267-275.	0.6	8
102	European biodiesel can be sustainable. Nature, 2012, 490, 37-37.	13.7	8
103	Haploids in the Improvement of Crucifers. , 2005, , 191-213.		7
104	Applied oilseed rape marker technology and genomics. , 2015, , 253-295.		7
105	Modification of Oilseed Quality by Genetic Transformation. Progress in Botany Fortschritte Der Botanik, 2001, , 140-174.	0.1	7
106	Exotic barley germplasms in breeding for resistance to soil-borne viruses. Euphytica, 1996, 92, 275-280.	0.6	6
107	Isolation of HMW DNA from sunflower (Helianthus annuus L.) for BAC cloning. Plant Molecular Biology Reporter, 2002, 20, 239-249.	1.0	6
108	Organ-specific alternatively spliced transcript isoforms of the sunflower SF21C gene. Plant Cell Reports, 2010, 29, 673-683.	2.8	6

#	Article	IF	CITATIONS
109	Verification of marker–trait associations in biparental winter barley (Hordeum vulgare L.) DH populations. Molecular Breeding, 2016, 36, 1.	1.0	6
110	Strategies of Breeding for Durable Disease Resistance in Cereals. Progress in Botany Fortschritte Der Botanik, 2003, , 138-167.	0.1	6
111	Applying Mendelian rules in rapeseed (Brassica napus) breeding. Genetika, 2016, 48, 1077-1086.	0.1	4
112	Die Zukunft der transgenen Pflanzen für europäsche Entwicklungen. , 0, , 11-20.		3
113	Recombination: From Genetic Towards Physical Distances: High Resolution Mapping of Plant Resistance Genes. Progress in Botany Fortschritte Der Botanik, 2000, , 37-53.	0.1	3
114	Genetic structure and differentiation among oregano [Origanum vulgare subsp. glandulosum (Desf.) letswaart] provenances from North Africa: bioinformatic approaches cause systematic bias. Genetic Resources and Crop Evolution, 2017, 64, 717-732.	0.8	2
115	Barley Production and Breeding in Europe: Modern Cultivars Combine Disease Resistance, Malting Quality and High Yield. , 2013, , 389-400.		2
116	Brassica. Genetic Resources, Chromosome Engineering, and Crop Improvement Series, 2006, , 195-230.	0.3	2
117	Marker Development for Important Grapevine Traits by Genetic Diversity Studies and Investigation of Differential Gene Expression. , 2010, , 375-387.		1
118	NAPUS 2000 Rapeseed (Brassica napus) breeding for improved human nutrition. Oleagineux Corps Gras Lipides, 2001, 8, 49-52.	0.2	0
119	Generating genetic variation in narrowâ€leafed lupin (<i>LupinusÂangustifolius</i> L.) for plant architecture by ethyl methanesulfonate mutagenesis. Plant Breeding, 2018, 137, 73-80.	1.0	0
120	Progress in rapeseed research. OCL - Oilseeds and Fats, Crops and Lipids, 2019, 26, 49.	0.6	0