## **Robim M Rodrigues**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8582959/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | E-Selectin-Dependent Inflammation and Lipolysis in Adipose Tissue Exacerbate Steatosis-to-NASH<br>Progression via S100A8/9. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 151-171.              | 2.3 | 26        |
| 2  | From NAFLD to MAFLD: Aligning Translational In Vitro Research to Clinical Insights. Biomedicines, 2022, 10, 161.                                                                                                    | 1.4 | 4         |
| 3  | Transcriptomics Reveals Discordant Lipid Metabolism Effects between In Vitro Models Exposed to Elafibranor and Liver Samples of NAFLD Patients after Bariatric Surgery. Cells, 2022, 11, 893.                       | 1.8 | 7         |
| 4  | Therapeutic potential of traditional Chinese medicine for the treatment of NAFLD: A promising drug<br>Potentilla discolor Bunge. Acta Pharmaceutica Sinica B, 2022, 12, 3529-3547.                                  | 5.7 | 13        |
| 5  | Human hepatic in vitro models reveal distinct anti-NASH potencies of PPAR agonists. Cell Biology and Toxicology, 2021, 37, 293-311.                                                                                 | 2.4 | 25        |
| 6  | MicroRNA-223 restricts liver fibrosis by inhibiting the TAZ-IHH-GLI2 and PDGF signaling pathways via the crosstalk of multiple liver cell types. International Journal of Biological Sciences, 2021, 17, 1153-1167. | 2.6 | 17        |
| 7  | Infections at the nexus of metabolic-associated fatty liver disease. Archives of Toxicology, 2021, 95, 2235-2253.                                                                                                   | 1.9 | 14        |
| 8  | Kupffer cell restoration after partial hepatectomy is mainly driven by local cell proliferation in<br>IL-6-dependent autocrine and paracrine manners. Cellular and Molecular Immunology, 2021, 18,<br>2165-2176.    | 4.8 | 22        |
| 9  | Transcriptional Profile of Cytokines, Regulatory Mediators and TLR in Mesenchymal Stromal Cells<br>after Inflammatory Signaling and Cell-Passaging. International Journal of Molecular Sciences, 2021,<br>22, 7309. | 1.8 | 9         |
| 10 | Interleukin-20 exacerbates acute hepatitis and bacterial infection by downregulating ll̂®Bζ target genes in hepatocytes. Journal of Hepatology, 2021, 75, 163-176.                                                  | 1.8 | 12        |
| 11 | Direct reprogramming of somatic cells into induced hepatocytes: Cracking the Enigma code. Journal of Hepatology, 2021, 75, 690-705.                                                                                 | 1.8 | 15        |
| 12 | Interplay of Liver–Heart Inflammatory Axis and Cannabinoid 2 Receptor Signaling in an Experimental<br>Model of Hepatic Cardiomyopathy. Hepatology, 2020, 71, 1391-1407.                                             | 3.6 | 46        |
| 13 | Anti-NASH Drug Development Hitches a Lift on PPAR Agonism. Cells, 2020, 9, 37.                                                                                                                                      | 1.8 | 85        |
| 14 | Flow cytometric quantification of neutral lipids in a human skin stem cell-derived model of NASH.<br>MethodsX, 2020, 7, 101068.                                                                                     | 0.7 | 3         |
| 15 | Protective and Detrimental Roles of p38α Mitogenâ€Activated Protein Kinase in Different Stages of<br>Nonalcoholic Fatty Liver Disease. Hepatology, 2020, 72, 873-891.                                               | 3.6 | 42        |
| 16 | The Impact of Cell-Expansion and Inflammation on The Immune-Biology of Human Adipose<br>Tissue-Derived Mesenchymal Stromal Cells. Journal of Clinical Medicine, 2020, 9, 696.                                       | 1.0 | 13        |
| 17 | COVID-19 and drug-induced liver injury: a problem of plenty or a petty point?. Archives of Toxicology, 2020, 94, 1367-1369.                                                                                         | 1.9 | 103       |
| 18 | Inflammation Alters the Secretome and Immunomodulatory Properties of Human Skin-Derived Precursor Cells. Cells, 2020, 9, 914.                                                                                       | 1.8 | 10        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Chronic-plus-binge alcohol intake induces production of proinflammatory mtDNA-enriched<br>extracellular vesicles and steatohepatitis via ASK1/p38MAPKα-dependent mechanisms. JCI Insight, 2020, 5, .               | 2.3 | 34        |
| 20 | Untargeted liquid chromatography-mass spectrometry metabolomics to assess drug-induced cholestatic features in HepaRGA® cells. Toxicology and Applied Pharmacology, 2019, 379, 114666.                             | 1.3 | 9         |
| 21 | Exposure of HepaRG Cells to Sodium Saccharin Underpins the Importance of Including<br>Non-Hepatotoxic Compounds When Investigating Toxicological Modes of Action Using Metabolomics.<br>Metabolites, 2019, 9, 265. | 1.3 | 1         |
| 22 | Transcriptomics data of a human inÂvitro model of non-alcoholic steatohepatitis exposed to elafibranor. Data in Brief, 2019, 25, 104093.                                                                           | 0.5 | 3         |
| 23 | Technological advancements for the development of stem cell-based models for hepatotoxicity testing. Archives of Toxicology, 2019, 93, 1789-1805.                                                                  | 1.9 | 15        |
| 24 | Elafibranor restricts lipogenic and inflammatory responses in a human skin stem cell-derived model of NASH. Pharmacological Research, 2019, 144, 377-389.                                                          | 3.1 | 24        |
| 25 | Metabolomics profiling of steatosis progression in HepaRG ® cells using sodium valproate.<br>Toxicology Letters, 2018, 286, 22-30.                                                                                 | 0.4 | 33        |
| 26 | Hepatic cells derived from human skin progenitors show a typical phospholipidotic response upon exposure to amiodarone. Toxicology Letters, 2018, 284, 184-194.                                                    | 0.4 | 9         |
| 27 | Comment to â€~Letter to the editor: Human-based systems: Mechanistic NASH modelling just around the corner?'. Pharmacological Research, 2018, 137, 282-283.                                                        | 3.1 | 2         |
| 28 | In vitro assessment of hepatotoxicity by metabolomics: a review. Archives of Toxicology, 2018, 92, 3007-3029.                                                                                                      | 1.9 | 55        |
| 29 | Omics-based responses induced by bosentan in human hepatoma HepaRG cell cultures. Archives of Toxicology, 2018, 92, 1939-1952.                                                                                     | 1.9 | 34        |
| 30 | Human-based systems: Mechanistic NASH modelling just around the corner?. Pharmacological Research, 2018, 134, 257-267.                                                                                             | 3.1 | 38        |
| 31 | Assaying Cellular Viability Using the Neutral Red Uptake Assay. Methods in Molecular Biology, 2017, 1601, 19-26.                                                                                                   | 0.4 | 45        |
| 32 | Optimisation of in vitro sample preparation for LC-MS metabolomics applications on HepaRG cell cultures. Analytical Methods, 2017, 9, 3704-3712.                                                                   | 1.3 | 11        |
| 33 | Inhibition of connexin hemichannels alleviates non-alcoholic steatohepatitis in mice. Scientific<br>Reports, 2017, 7, 8268.                                                                                        | 1.6 | 33        |
| 34 | Gene expression data from acetaminophen-induced toxicity in human hepatic in vitro systems and clinical liver samples. Data in Brief, 2016, 7, 1052-1057.                                                          | 0.5 | 8         |
| 35 | Toxicogenomics-based prediction of acetaminophen-induced liver injury using human hepatic cell systems. Toxicology Letters, 2016, 240, 50-59.                                                                      | 0.4 | 49        |
| 36 | In vitro assessment of drug-induced liver steatosis based on human dermal stem cell-derived hepatic cells. Archives of Toxicology, 2016, 90, 677-689.                                                              | 1.9 | 24        |

**ROBIM M RODRIGUES** 

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Metabolomics analysis of the toxicity pathways of triphenyl phosphate in HepaRG cells and comparison to oxidative stress mechanisms caused by acetaminophen. Toxicology in Vitro, 2015, 29, 2045-2054.                                          | 1.1 | 31        |
| 38 | ldentification of potential biomarkers of hepatitis B-induced acute liver failure using hepatic cells derived from human skin precursors. Toxicology in Vitro, 2015, 29, 1231-1239.                                                             | 1.1 | 4         |
| 39 | MicroRNAs as key regulators of xenobiotic biotransformation and drug response. Archives of Toxicology, 2015, 89, 1523-1541.                                                                                                                     | 1.9 | 16        |
| 40 | Measurement of Cytochrome P450 Enzyme Induction and Inhibition in Human Hepatoma Cells. Methods<br>in Molecular Biology, 2015, 1250, 279-285.                                                                                                   | 0.4 | 4         |
| 41 | Human Skin-Derived Precursor Cells: Isolation, Expansion, and Hepatic Differentiation. Methods in<br>Molecular Biology, 2015, 1250, 113-122.                                                                                                    | 0.4 | 5         |
| 42 | Human Skin-Derived Precursor Cells Are Poorly Immunogenic and Modulate the Allogeneic Immune Response. Stem Cells, 2014, 32, 2215-2228.                                                                                                         | 1.4 | 16        |
| 43 | Human stem cell-derived hepatocytes: breakthrough of an expedient tool for preclinical assessment of drug-induced liver injury?. Archives of Toxicology, 2014, 88, 183-184.                                                                     | 1.9 | 4         |
| 44 | Human Skin-Derived Stem Cells as a Novel Cell Source for In Vitro Hepatotoxicity Screening of Pharmaceuticals. Stem Cells and Development, 2014, 23, 44-55.                                                                                     | 1.1 | 48        |
| 45 | Proliferative and phenotypical characteristics of human adipose tissue–derived stem cells:<br>comparison of Ficoll gradient centrifugation and red blood cell lysis buffer treatment purification<br>methods. Cytotherapy, 2014, 16, 1220-1228. | 0.3 | 22        |
| 46 | Assessment of an automated in vitro basal cytotoxicity test system based on metabolically-competent cells. Toxicology in Vitro, 2013, 27, 760-767.                                                                                              | 1.1 | 34        |
| 47 | Mesoderm-Derived Stem Cells: The Link Between the Transcriptome and Their Differentiation Potential.<br>Stem Cells and Development, 2012, 21, 3309-3323.                                                                                        | 1.1 | 47        |
| 48 | Automation of an in vitro cytotoxicity assay used to estimate starting doses in acute oral systemic toxicity tests. Food and Chemical Toxicology, 2012, 50, 2084-2096.                                                                          | 1.8 | 31        |
| 49 | Non-invasive monitoring of cytotoxicity based on kinetic changes of cellular autofluorescence.<br>Toxicology in Vitro, 2011, 25, 2088-2094.                                                                                                     | 1.1 | 7         |
| 50 | Autofluorescence microscopy: A non-destructive tool to monitor mitochondrial toxicity. Toxicology<br>Letters, 2011, 206, 281-288.                                                                                                               | 0.4 | 31        |
| 51 | Inter- and intra-laboratory study to determine the reproducibility of toxicogenomics datasets.<br>Toxicology, 2011, 290, 50-58.                                                                                                                 | 2.0 | 12        |
| 52 | Enrichment of hepatocytes in a HepaRG culture using spatially selective photodynamic treatment.<br>Journal of Biomedical Optics, 2010, 15, 028002.                                                                                              | 1.4 | 1         |