Fei Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8582706/publications.pdf

Version: 2024-02-01

236833 223716 2,232 61 25 46 citations h-index g-index papers 62 62 62 2466 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation. Chemical Engineering Journal, 2013, 218, 183-190.	6.6	265
2	Fabrication, characterization, and photocatalytic performance of exfoliated g-C3N4–TiO2 hybrids. Applied Surface Science, 2014, 311, 574-581.	3.1	179
3	A facile modification of g-C3N4 with enhanced photocatalytic activity for degradation of methylene blue. Applied Surface Science, 2013, 280, 967-974.	3.1	167
4	Simultaneous photocatalytic Cr(VI) reduction and 2,4,6-TCP oxidation over g-C3N4 under visible light irradiation. Catalysis Today, 2014, 224, 34-40.	2.2	127
5	A visible-light-driven heterojuncted composite WO3/Bi12O17Cl2: Synthesis, characterization, and improved photocatalytic performance. Journal of Colloid and Interface Science, 2018, 510, 20-31.	5.0	120
6	Construction of exfoliated g-C3N4 nanosheets–BiOCl hybrids with enhanced photocatalytic performance. RSC Advances, 2014, 4, 28519.	1.7	75
7	Photolysis Kinetics, Mechanisms, and Pathways of Tetrabromobisphenol A in Water under Simulated Solar Light Irradiation. Environmental Science & Envir	4.6	73
8	Heterojuncted non-metal binary composites silicon carbide/g-C3N4 with enhanced photocatalytic performance. Materials Science in Semiconductor Processing, 2018, 75, 183-192.	1.9	72
9	Strengthened photocatalytic removal of bisphenol a by robust 3D hierarchical n-p heterojunctions Bi4O5Br2-MnO2 via boosting oxidative radicals generation. Chemical Engineering Journal, 2022, 428, 131223.	6.6	70
10	Ultra-stable Bi4O5Br2/Bi2S3 n-p heterojunctions induced simultaneous generation of radicals OH and O2â° and NO conversion to nitrate/nitrite species with high selectivity under visible light. Chemical Engineering Journal, 2021, 413, 127443.	6.6	64
11	In-situ constructing Bi2S3 nanocrystals-modified Bi12O17Cl2 nanosheets with features of rich oxygen vacancies and reinforced photocatalytic performance. Separation and Purification Technology, 2020, 235, 116171.	3.9	60
12	N-p heterojunction Bi4O5I2/Fe3O4 composites with efficiently magnetic recyclability and enhanced visible-light-driven photocatalytic performance. Separation and Purification Technology, 2020, 238, 116442.	3.9	57
13	In-situ establishment of binary composites α-Fe2O3/Bi12O17Cl2 with both photocatalytic and photo-Fenton features. Chemosphere, 2018, 210, 257-266.	4.2	55
14	Oxygen-rich bismuth oxychloride Bi12O17Cl2 materials: construction, characterization, and sonocatalytic degradation performance. Ultrasonics Sonochemistry, 2019, 50, 105-113.	3.8	52
15	Enhanced visible-light-driven photocatalytic performance of porous graphitic carbon nitride. Applied Surface Science, 2015, 358, 270-277.	3.1	50
16	Enhanced photocatalytic performance of g-C3N4 nanosheets–BiOBr hybrids. Superlattices and Microstructures, 2014, 76, 90-104.	1.4	49
17	Enhanced photocatalytic conversion of NOx with satisfactory selectivity of 3D-2D Bi4O5Br2-GO hierarchical structures via a facile microwave-assisted preparation. Separation and Purification Technology, 2021, 266, 118237.	3.9	49
18	Enhanced photocatalytic NO removal with the superior selectivity for NO2â^'/NO3â^' species of Bi12GeO20-based composites via a ball-milling treatment: Synergetic effect of surface oxygen vacancies and n-p heterojunctions. Composites Part B: Engineering, 2022, 231, 109600.	5.9	42

#	Article	IF	CITATIONS
19	Ag/Bi12O17Cl2 composite: A case study of visible-light-driven plasmonic photocatalyst. Molecular Catalysis, 2017, 427, 45-53.	1.0	35
20	Poly(vinyl pyrrolidone)-assisted hydrothermal synthesis and enhanced visible-light photocatalytic performance of oxygen-rich bismuth oxychlorides. Journal of Colloid and Interface Science, 2015, 459, 136-145.	5.0	33
21	Highly efficient solvent-free catalytic hydrogenation of solid alkenes and nitro-aromatics using Pd nanoparticles entrapped in aluminum oxy-hydroxide. Tetrahedron Letters, 2010, 51, 4250-4252.	0.7	32
22	Binary composites WO3/g-C3N4 in porous morphology: Facile construction, characterization, and reinforced visible light photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 11-21.	2.3	32
23	Novel CO2-soluble pyridine derivatives and the extraction of heavy metals into Sc-CO2. Journal of Supercritical Fluids, 2008, 45, 43-50.	1.6	31
24	Mesoporous Silica-Supported Pd Nanoparticles; Highly Selective Catalyst for Hydrogenation of Olefins in Supercritical Carbon Dioxide. Chemistry of Materials, 2006, 18, 5631-5633.	3.2	27
25	Synthesis and Photocatalytic Performance of Bi12O17Cl2 Semiconductors Calcined at Different Temperatures. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 721-730.	1.9	26
26	Boosted photocatalytic NO removal performance by S-scheme hierarchical composites WO3/Bi4O5Br2 prepared through a facile ball-milling protocol. Separation and Purification Technology, 2021, 278, 119662.	3.9	23
27	Synthesis of TiO2 nanoparticles on mesoporous aluminosilicate Al-SBA-15 in supercritical CO2 for photocatalytic decolorization of methylene blue. Ceramics International, 2013, 39, 3823-3829.	2.3	21
28	The effect of the end group, molecular weight and size on the solubility of compounds in supercritical carbon dioxide. Fluid Phase Equilibria, 2012, 317, 36-42.	1.4	19
29	The reinforced photocatalytic performance of binary-phased composites Bi-Bi12O17Cl2 fabricated by a facile chemical reduction protocol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572, 290-298.	2.3	19
30	Photodegradation of Bisphenol A by Titana Nanoparticles in Mesoporous MCM-41. Water, Air, and Soil Pollution, 2011, 214, 491-498.	1.1	18
31	Oneâ€Pot Polyvinyl Alcoholâ€Assisted Hydrothermal Synthesis of Hierarchical Flowerâ€Like BiOCl Nanoplates with Enhancement of Photocatalytic Activity for Degradation of Rhodamine B. Clean - Soil, Air, Water, 2014, 42, 521-527.	0.7	18
32	Facile fabrication of mesoporous Fe-Ti-SBA15 silica with enhanced visible-light-driven simultaneous photocatalytic degradation and reduction reactions. Applied Surface Science, 2018, 435, 708-717.	3.1	18
33	A facile one-pot and alkali-free synthetic procedure for binary SnO2/g-C3N4 composites with enhanced photocatalytic behavior. Materials Science in Semiconductor Processing, 2020, 115, 105112.	1.9	18
34	Synergistic effects of Ag-doped and morphology regulation of graphitic carbon nitride nanosheets for enhanced photocatalytic performance. Journal of Molecular Liquids, 2021, 324, 114772.	2.3	18
35	The construction and enhanced photocatalytic performance of binary composite S/g-C3N4. Materials Science in Semiconductor Processing, 2018, 87, 1-6.	1.9	17
36	Fabrication of Bi12GeO20/Bi2S3 hybrids with surface oxygen vacancies by a facile CS2-mediated manner and enhanced photocatalytic performance in water and saline water. Separation and Purification Technology, 2022, 287, 120532.	3.9	16

#	Article	IF	Citations
37	Enhanced visible-light-driven photocatalytic performance of mesoporous W-Ti-SBA-15 prepared through a facile hydrothermal route. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 499, 69-78.	2.3	15
38	Synthesis, characterization, and visible-light-driven photocatalytic performance of W-SBA15. Journal of Colloid and Interface Science, 2016, 468, 284-291.	5.0	15
39	In situ construction, photocatalytic performance, and mechanism speculation of plasmonic binary Bi/ \hat{l}^2 -Bi2O3 hybrids. Materials Science in Semiconductor Processing, 2018, 80, 1-8.	1.9	14
40	Ag nanoparticles-embellished Bi12GeO20 composites: A plasmonic system featured with reinforced visible-light photocatalytic performance and ultra-stability. Applied Surface Science, 2020, 527, 146946.	3.1	14
41	A novel and facile procedure to decorate Bi2O3 with Bi2S3 nanocrystals: Composites synthesis, analyses, and photocatalytic performance assessment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125640.	2.3	14
42	Ag/AgCl nanoparticles decorated 2D-Bi12O17Cl2 plasmonic composites prepared without exotic chlorine ions with enhanced photocatalytic performance. Molecular Catalysis, 2019, 477, 110538.	1.0	12
43	Pd-catalyzed Dehalogenation of Aromatic Halides Under Solvent-free Conditions Using Hydrogen Balloon. Bulletin of the Korean Chemical Society, 2011, 32, 1074-1076.	1.0	12
44	Mechanical properties and microstructure of multilayer graphene oxide cement mortar. Frontiers of Structural and Civil Engineering, 2021, 15, 1058-1070.	1.2	11
45	Strengthened photocatalytic removal of bisphenol A under visible light by magnetic ternary heterojunctions Bi4O5Br2/Bi4O5I2/Fe3O4. Journal of Alloys and Compounds, 2022, 908, 164644.	2.8	11
46	Self-sensitized photochlorination of benzo[a]pyrene in saline water under simulated solar light irradiation. Journal of Hazardous Materials, 2021, 408, 124445.	6.5	9
47	Solubilities and partial molar volumes of N,N′-dibutyl-oxalamide, N,N′-dihexyl-oxalamide, N,N′-dioctyl-oxalamide in supercritical carbon dioxide. Journal of Chemical Thermodynamics, 2012, 54, 339-345.	1.0	8
48	Numerical Simulation of the Arrangement of Baffles on Radiation Distribution and Disinfection in UV Reactors. Chemical Engineering and Technology, 2016, 39, 108-114.	0.9	8
49	One-Pot Construction of Titania- \hat{I}^3 -AlOOH Nanocomposites Employed for Photocatalytic Degradation. Water, Air, and Soil Pollution, 2012, 223, 2073-2081.	1.1	7
50	Synthesis of Ergosterol and 5,6-Dihydroergosterol Glycosides and Their Inhibitory Activities on Lipopolysaccharide-Induced Nitric Oxide Production. Bulletin of the Korean Chemical Society, 2013, 34, 1339-1344.	1.0	7
51	Solubility of Novel CO ₂ -Soluble Pyridine Derivatives in Supercritical Carbon Dioxide. Journal of Chemical & Description (2009, 54, 1262-1265).	1.0	6
52	Solubilities and partial molar volumes of 1-methypropanedioate derivatives in supercritical carbon dioxide. Fluid Phase Equilibria, 2012, 334, 43-50.	1.4	6
53	Bi4O5Br2-based binary composites: Facile fabrication, characterization, and enhanced photocatalytic performance over NO removal. Materials Science in Semiconductor Processing, 2021, 129, 105788.	1.9	5
54	Template-Free Synthesis and Enhanced Photocatalytic Performance of Uniform BiOCl Flower-Like Microspheres. Journal of Nanoscience and Nanotechnology, 2015, 15, 1421-1426.	0.9	3

FEI CHANG

#	Article	IF	CITATIONS
55	Preparation of TiO2-diatomite composites by ball-milling and its photocatalytic degradation of methyl orange. Water Science and Technology: Water Supply, 2011, 11, 121-127.	1.0	2
56	Aniline chlorination by in situ formed Ag–Cl complexes under simulated solar light irradiation. Water Science and Technology, 2015, 71, 1679-1685.	1.2	2
57	Photocatalytic Degradation of Azo Dye Active Brilliant Red X-3B by Composite Materials of TiO2 and 13X Molecular Sieves. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	1
58	Studies on the adsorption of sulfo-group-containing aromatics by chitosan-β-cyclodextrin. Water Science and Technology, 2012, 65, 802-807.	1.2	1
59	Fabrication, characterization, and visible-light photocatalytic performance of ternary plasmonic composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 329-338.	2.3	1
60	Plasmonic composites WO3/Bi12O17Cl2 decorated with uniform Ag nanoparticles in tiny size: Synthesis, analyses, and visible-light photocatalytic performance. Environmental Nanotechnology, Monitoring and Management, 2021, 15, 100436.	1.7	1
61	Photocatalytic NO removal by WO ₃ samples prepared via a ball milling treatment under different parameters. Inorganic and Nano-Metal Chemistry, 0, , 1-13.	0.9	0