A I Eriksson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8582474/publications.pdf

Version: 2024-02-01

204 9,794 papers citations

51 h-index

223 all docs

223
docs citations

223 times ranked 3822 citing authors

91

g-index

#	Article	IF	CITATIONS
1	Cometary plasma science. Experimental Astronomy, 2022, 54, 1129-1167.	3.7	3
2	Empirical Photochemical Modeling of Saturn's Ionization Balance Including Grain Charging. Planetary Science Journal, 2022, 3, 49.	3.6	3
3	Radial distribution of plasma at comet 67P. Astronomy and Astrophysics, 2022, 663, A42.	5.1	3
4	Implications from secondary emission from neutral impact on <i>Cassini</i> plasma and dust measurements. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2340-2350.	4.4	6
5	Ion bulk speeds and temperatures in the diamagnetic cavity of comet 67P from RPC-ICA measurements. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2733-2745.	4.4	8
6	Multi-instrument analysis of far-ultraviolet aurora in the southern hemisphere of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2021, 647, A119.	5.1	6
7	Statistical study of electron density turbulence and ion-cyclotron waves in the inner heliosphere: Solar Orbiter observations. Astronomy and Astrophysics, 2021, 656, A16.	5.1	5
8	Kinetic electrostatic waves and their association with current structures in the solar wind. Astronomy and Astrophysics, 2021, 656, A23.	5.1	12
9	Density fluctuations associated with turbulence and waves. Astronomy and Astrophysics, 2021, 656, A19.	5.1	24
10	The Spacecraft Wake: Interference With Electric Field Observations and a Possibility to Detect Cold Ions. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029493.	2.4	9
11	A Case for a Small to Negligible Influence of Dust Charging on the Ionization Balance in the Coma of Comet 67P. Planetary Science Journal, 2021, 2, 156.	3.6	3
12	Plasma densities, flow, and solar EUV flux at comet 67P. Astronomy and Astrophysics, 2021, 653, A128.	5.1	9
13	Flow directions of low-energy ions in and around the diamagnetic cavity of comet 67P. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4900-4913.	4.4	5
14	First observations and performance of the RPW instrument on board the Solar Orbiter mission. Astronomy and Astrophysics, 2021, 656, A41.	5.1	9
15	High-Latitude Cold Ion Outflow Inferred From the Cluster Wake Observations in the Magnetotail Lobes and the Polar Cap Region. Frontiers in Physics, 2021, 9, .	2.1	1
16	The Influence of Spacecraft Charging on Lowâ€Energy Ion Measurements Made by RPCâ€ICA on Rosetta. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027478.	2.4	26
17	Average cometary ion flow pattern in the vicinity of comet 67P from moment data. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5263-5272.	4.4	16
18	The MEFISTO and WPT Electric Field Sensors of the Plasma Wave Investigation on the BepiColombo Mio Spacecraft. Space Science Reviews, 2020, 216, 1.	8.1	7

#	Article	IF	CITATIONS
19	Far-ultraviolet aurora identified at comet 67P/Churyumov-Gerasimenko. Nature Astronomy, 2020, 4, 1084-1091.	10.1	11
20	The Influence of Varying Spacecraft Potentials and Debye Lengths on In Situ Lowâ€Energy Ion Measurements. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027870.	2.4	12
21	Momentum and Pressure Balance of a Comet Ionosphere. Geophysical Research Letters, 2020, 47, e2020GL088666.	4.0	8
22	The Solar Orbiter Radio and Plasma Waves (RPW) instrument. Astronomy and Astrophysics, 2020, 642, A12.	5.1	80
23	Observations of a mix of cold and warm electrons by RPC-MIP at 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2020, 640, A110.	5.1	14
24	A charging model for the Rosetta spacecraft. Astronomy and Astrophysics, 2020, 642, A43.	5.1	16
25	A Fully Kinetic Perspective of Electron Acceleration around a Weakly Outgassing Comet. Astrophysical Journal Letters, 2020, 889, L33.	8.3	8
26	Plasma Density and Magnetic Field Fluctuations in the Ion Gyroâ€Frequency Range Near the Diamagnetic Cavity of Comet 67P. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028592.	2.4	4
27	The Evolution of the Electron Number Density in the Coma of Comet 67P at the Location of Rosetta from 2015 November through 2016 March. Astrophysical Journal, 2019, 881, 6.	4.5	7
28	Building a Weakly Outgassing Comet from a Generalized Ohm's Law. Physical Review Letters, 2019, 123, 055101.	7.8	21
29	The Convective Electric Field Influence on the Cold Plasma and Diamagnetic Cavity of Comet 67P. Astronomical Journal, 2019, 158, 71.	4.7	7
30	Solar flares observed by Rosetta at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A49.	5.1	4
31	Electron acceleration at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A40.	5.1	4
32	Unusually high magnetic fields in the coma of 67P/Churyumov-Gerasimenko during its high-activity phase. Astronomy and Astrophysics, 2019, 630, A38.	5.1	10
33	Saturn's Dusty Ionosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 1679-1697.	2.4	27
34	Properties of the singing comet waves in the 67P/Churyumov-Gerasimenko plasma environment as observed by the Rosetta mission. Astronomy and Astrophysics, 2019, 630, A39.	5.1	14
35	Plasma properties of suprathermal electrons near comet 67P/Churyumov-Gerasimenko with Rosetta. Astronomy and Astrophysics, 2019, 630, A42.	5.1	18
36	Influence of collisions on ion dynamics in the inner comae of four comets. Astronomy and Astrophysics, 2019, 630, A48.	5.1	4

3

#	Article	IF	CITATIONS
37	On the ion-neutral coupling in cometary comae. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1937-1941.	4.4	7
38	Saturn's lonosphere: Electron Density Altitude Profiles and Dâ€Ring Interaction From The Cassini Grand Finale. Geophysical Research Letters, 2019, 46, 9362-9369.	4.0	20
39	Dynamic field line draping at comet 67P/Churyumov-Gerasimenko during the Rosetta dayside excursion. Astronomy and Astrophysics, 2019, 630, A44.	5.1	4
40	Dynamic unmagnetized plasma in the diamagnetic cavity around comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4140-4147.	4.4	19
41	In situ measurements of Saturn's ionosphere show that it is dynamic and interacts with the rings. Science, 2018, 359, 66-68.	12.6	40
42	First observations of magnetic holes deep within the coma of a comet. Astronomy and Astrophysics, 2018, 618, A114.	5.1	24
43	Plasma density structures at comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1296-1307.	4.4	11
44	Plasma source and loss at comet 67P during the Rosetta mission. Astronomy and Astrophysics, 2018, 618, A77.	5.1	38
45	The infant bow shock: a new frontier at a weak activity comet. Astronomy and Astrophysics, 2018, 619, L2.	5.1	32
46	Enhanced Escape of Spacecraft Photoelectrons Caused by Langmuir and Upper Hybrid Waves. Journal of Geophysical Research: Space Physics, 2018, 123, 7534-7553.	2.4	14
47	Size of a plasma cloud matters. Astronomy and Astrophysics, 2018, 616, A50.	5.1	26
48	Ring Shadowing Effects on Saturn's Ionosphere: Implications for Ring Opacity and Plasma Transport. Geophysical Research Letters, 2018, 45, 10,084.	4.0	17
49	Cometary plasma response to interplanetary corotating interaction regions during 2016 June–September: a quantitative study by the Rosetta Plasma Consortium. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4544-4556.	4.4	26
50	The Cassini RPWS/LP Observations of Dusty Plasma in the Kronian System. Proceedings of the International Astronomical Union, 2018, 14, 415-416.	0.0	0
51	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
52	Extremely Lowâ€Frequency Waves Inside the Diamagnetic Cavity of Comet 67P/Churyumovâ€Gerasimenko. Geophysical Research Letters, 2018, 45, 3854-3864.	4.0	14
53	Ion Velocity and Electron Temperature Inside and Around the Diamagnetic Cavity of Comet 67P. Journal of Geophysical Research: Space Physics, 2018, 123, 5870-5893.	2.4	39
54	On the origin of molecular oxygen in cometary comae. Nature Communications, 2018, 9, 2580.	12.8	22

#	Article	IF	Citations
55	Cold electrons at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2018, 616, A51.	5.1	24
56	Rosetta measurements of lower hybrid frequency range electric field oscillations in the plasma environment of comet 67P. Geophysical Research Letters, 2017, 44, 1641-1651.	4.0	26
57	Current sheets in comet 67P/Churyumovâ€Gerasimenko's coma. Journal of Geophysical Research: Space Physics, 2017, 122, 3308-3321.	2.4	11
58	Lower hybrid waves at comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S29-S38.	4.4	26
59	Vertical structure of the near-surface expanding ionosphere of comet 67P probed by Rosetta. Monthly Notices of the Royal Astronomical Society, 2017, 469, S118-S129.	4.4	39
60	A 1D Model of Radial Ion Motion Interrupted by Ion–Neutral Interactionsin a Cometary Coma. Astronomical Journal, 2017, 153, 150.	4.7	36
61	Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. Journal of Geophysical Research: Space Physics, 2017, 122, 2655-2673.	2.4	183
62	Effective ion speeds at â ¹ /4200–250Âkm from comet 67P/Churyumov–Gerasimenko near perihelion. Monthly Notices of the Royal Astronomical Society, 2017, 469, S142-S148.	4.4	29
63	Ion acoustic waves at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 600, A3.	5.1	28
64	Cold Ion Outflow Modulated by the Solar Wind Energy Input and Tilt of the Geomagnetic Dipole. Journal of Geophysical Research: Space Physics, 2017, 122, 10,658.	2.4	14
65	Diamagnetic region(s): structure of the unmagnetized plasma around Comet 67P/CG. Monthly Notices of the Royal Astronomical Society, 2017, 469, S372-S379.	4.4	51
66	Ion composition at comet 67P near perihelion: Rosetta observations and model-based interpretation. Monthly Notices of the Royal Astronomical Society, 2017, 469, S427-S442.	4.4	28
67	Solar Illumination Control of the Polar Wind. Journal of Geophysical Research: Space Physics, 2017, 122, 11,468-11,480.	2.4	6
68	Plasma waves confined to the diamagnetic cavity of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S84-S92.	4.4	19
69	Two years of solar wind and pickup ion measurements at comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S262-S267.	4.4	5
70	Electron and Ion Dynamics of the Solar Wind Interaction with a Weakly Outgassing Comet. Physical Review Letters, 2017, 118, 205101.	7.8	52
71	Investigating short-time-scale variations in cometary ions around comet 67P. Monthly Notices of the Royal Astronomical Society, 2017, 469, S522-S534.	4.4	24
72	Measurements of the electrostatic potential of Rosetta at comet 67P. Monthly Notices of the Royal Astronomical Society, 2017, 469, S568-S581.	4.4	39

#	Article	IF	CITATIONS
73	Rosetta photoelectron emission and solar ultraviolet flux at comet 67P. Monthly Notices of the Royal Astronomical Society, 2017, 469, S626-S635.	4.4	24
74	The Spin-Plane Double Probe Electric Field Instrument for MMS., 2017,, 137-165.		6
75	Impact of a cometary outburst on its ionosphere. Astronomy and Astrophysics, 2017, 607, A34.	5.1	21
76	Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko. Annales Geophysicae, 2016, 34, 1-15.	1.6	46
77	RPC observation of the development and evolution of plasma interaction boundaries at 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S9-S22.	4.4	62
78	First detection of a diamagnetic cavity at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 588, A24.	5.1	95
79	MODEL-OBSERVATION COMPARISONS OF ELECTRON NUMBER DENSITIES IN THE COMA OF 67P/CHURYUMOV–GERASIMENKO DURING 2015 JANUARY. Astronomical Journal, 2016, 152, 59.	4.7	24
80	Characterizing cometary electrons with kappa distributions. Journal of Geophysical Research: Space Physics, 2016, 121, 7407-7422.	2.4	62
81	Solar wind interaction with comet 67P: Impacts of corotating interaction regions. Journal of Geophysical Research: Space Physics, 2016, 121, 949-965.	2.4	33
82	Kilowattâ€level power amplifier in a singleâ€ended architecture at 352ÂMHz. Electronics Letters, 2016, 52, 1552-1554.	1.0	14
83	Suprathermal electrons near the nucleus of comet 67P/Churyumovâ€Gerasimenko at 3 AU: Model comparisons with Rosetta data. Journal of Geophysical Research: Space Physics, 2016, 121, 5815-5836.	2.4	49
84	Observations of high-plasma density region in the inner coma of 67P/Churyumov–Gerasimenko during early activity. Monthly Notices of the Royal Astronomical Society, 2016, 462, S33-S44.	4.4	11
85	The 2016 Feb 19 outburst of comet 67P/CG: an ESA Rosetta multi-instrument study. Monthly Notices of the Royal Astronomical Society, 2016, 462, S220-S234.	4.4	60
86	Statistical analysis of suprathermal electron drivers at 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S312-S322.	4.4	45
87	Enhanced O ₂ ⁺ loss at Mars due to an ambipolar electric field from electron heating. Journal of Geophysical Research: Space Physics, 2016, 121, 4668-4678.	2.4	48
88	Ionospheric plasma of comet 67P probed by <i>Rosetta</i> at 3Âau from the Sun. Monthly Notices of the Royal Astronomical Society, 2016, 462, S331-S351.	4.4	75
89	CME impact on comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S45-S56.	4.4	42
90	Structure and evolution of the diamagnetic cavity at comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S459-S467.	4.4	79

#	Article	IF	CITATIONS
91	The Spin-Plane Double Probe Electric Field Instrument for MMS. Space Science Reviews, 2016, 199, 137-165.	8.1	543
92	The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products. Space Science Reviews, 2016, 199, 105-135.	8.1	390
93	The Spin-Plane Double Probe Electric Field Instrument for MMS. , 2016, 199, 137.		1
94	The first in situ electron temperature and density measurements of the Martian nightside ionosphere. Geophysical Research Letters, 2015, 42, 8854-8861.	4.0	62
95	Spatial distribution of lowâ€energy plasma around comet 67P/CG from Rosetta measurements. Geophysical Research Letters, 2015, 42, 4263-4269.	4.0	74
96	Evolution of the plasma environment of comet 67P from spacecraft potential measurements by the Rosetta Langmuir probe instrument. Geophysical Research Letters, 2015, 42, 10,126.	4.0	49
97	Control of the topside Martian ionosphere by crustal magnetic fields. Journal of Geophysical Research: Space Physics, 2015, 120, 3042-3058.	2.4	45
98	SWARM observations of equatorial electron densities and topside GPS track losses. Geophysical Research Letters, 2015, 42, 2088-2092.	4.0	66
99	Dayside electron temperature and density profiles at Mars: First results from the MAVEN Langmuir probe and waves instrument. Geophysical Research Letters, 2015, 42, 8846-8853.	4.0	116
100	ON THE ELECTRON-TO-NEUTRAL NUMBER DENSITY RATIO IN THE COMA OF COMET 67P/CHURYUMOV–GERASIMENKO: GUIDING EXPRESSION AND SOURCES FOR DEVIATIONS. Astrophysical Journal, 2015, 812, 54.	4.5	31
101	The Langmuir Probe and Waves (LPW) Instrument for MAVEN. Space Science Reviews, 2015, 195, 173-198.	8.1	183
102	Estimation of cold plasma outflow during geomagnetic storms. Journal of Geophysical Research: Space Physics, 2015, 120, 10,622.	2.4	18
103	Observation of a new type of low-frequency waves at comet 67P/Churyumov-Gerasimenko. Annales Geophysicae, 2015, 33, 1031-1036.	1.6	66
104	Outflow of lowâ€energy ions and the solar cycle. Journal of Geophysical Research: Space Physics, 2015, 120, 1072-1085.	2.4	47
105	Evolution of the ion environment of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A20.	5.1	76
106	Birth of a comet magnetosphere: A spring of water ions. Science, 2015, 347, aaa0571.	12.6	107
107	ON THE POSSIBILITY OF SIGNIFICANT ELECTRON DEPLETION DUE TO NANOGRAIN CHARGING IN THE COMA OF COMET 67P/CHURYUMOV-GERASIMENKO NEAR PERIHELION. Astrophysical Journal, 2015, 798, 130.	4.5	15
108	The Mars Atmosphere and Volatile Evolution (MAVEN) Mission. Space Science Reviews, 2015, 195, 3-48.	8.1	563

#	Article	IF	Citations
109	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166
110	Dust observations at orbital altitudes surrounding Mars. Science, 2015, 350, aad0398.	12.6	41
111	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	12.6	90
112	Plasma regions, charged dust and field-aligned currents near Enceladus. Planetary and Space Science, 2015, 117, 453-469.	1.7	16
113	lonospheric plasma density variations observed at Mars by MAVEN/LPW. Geophysical Research Letters, 2015, 42, 8862-8869.	4.0	32
114	First results from the Langmuir Probes on the Swarm satellites. , 2014, , .		1
115	In-flight calibration of double-probe electric field measurements on Cluster. Geoscientific Instrumentation, Methods and Data Systems, 2014, 3, 143-151.	1.6	13
116	Transport of cold ions from the polar ionosphere to the plasma sheet. Journal of Geophysical Research: Space Physics, 2013, 118, 5467-5477.	2.4	32
117	Cold Ion Outflow as a Source of Plasma for the Magnetosphere. Geophysical Monograph Series, 2013, , 341-354.	0.1	8
118	Hot and cold ion outflow: Observations and implications for numerical models. Journal of Geophysical Research: Space Physics, 2013, 118, 105-117.	2.4	29
119	Are Weak Double Layers Important for Auroral Particle Acceleration?. Geophysical Monograph Series, 2013, , 105-112.	0.1	5
120	Hot and cold ion outflow: Spatial distribution of ion heating. Journal of Geophysical Research, 2012, 117, .	3.3	48
121	Correction to "Dusty plasma in the vicinity of Enceladus― Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	1
122	Earth magnetic field effects on Swarm electric field instrument. Planetary and Space Science, 2012, 73, 145-150.	1.7	7
123	On the ionospheric source region of cold ion outflow. Geophysical Research Letters, 2012, 39, .	4.0	45
124	The detection of energetic electrons with the Cassini Langmuir probe at Saturn. Journal of Geophysical Research, 2012, 117, .	3.3	8
125	Estimating the capture and loss of cold plasma from ionospheric outflow. Journal of Geophysical Research, 2012, 117 , .	3.3	52
126	Observations of oxygen ions in the dayside magnetosheath associated with southward IMF. Journal of Geophysical Research, 2012, 117, .	3.3	15

#	Article	IF	CITATIONS
127	Simulation of Potential Measurements Around a Photoemitting Spacecraft in a Flowing Plasma. IEEE Transactions on Plasma Science, 2012, 40, 1257-1261.	1.3	10
128	Dusty plasma in the vicinity of Enceladus. Journal of Geophysical Research, 2011, 116, .	3.3	89
129	Centrifugal acceleration in the magnetotail lobes. Annales Geophysicae, 2010, 28, 569-576.	1.6	47
130	The electron density of Saturn's magnetosphere. Annales Geophysicae, 2009, 27, 2971-2991.	1.6	73
131	Formation of lower-hybrid solitary structures by modulational interaction between lower-hybrid and dispersive Alfvén waves. Annales Geophysicae, 2009, 27, 1027-1033.	1.6	4
132	Survey of cold ionospheric outflows in the magnetotail. Annales Geophysicae, 2009, 27, 3185-3201.	1.6	92
133	Earth's ionospheric outflow dominated by hidden cold plasma. Nature Geoscience, 2009, 2, 24-27.	12.9	97
134	Detection of dusty plasma near the E-ring of Saturn. Planetary and Space Science, 2009, 57, 1795-1806.	1.7	104
135	On the amount of heavy molecular ions in Titan's ionosphere. Planetary and Space Science, 2009, 57, 1857-1865.	1.7	96
136	Simultaneous measurements of Martian plasma boundaries by Rosetta and Mars Express. Planetary and Space Science, 2009, 57, 1085-1096.	1.7	13
137	Rosetta and Mars Express observations of the influence of high solar wind pressure on the Martian plasma environment. Annales Geophysicae, 2009, 27, 4533-4545.	1.6	21
138	Electron density estimations derived from spacecraft potential measurements on Cluster in tenuous plasma regions. Journal of Geophysical Research, 2008, 113 , .	3.3	135
139	Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields. Journal of Geophysical Research, 2008, 113 , .	3.3	93
140	Correction to "Electron density estimations derived from spacecraft potential measurements on Cluster in tenuous plasma regions― Journal of Geophysical Research, 2008, 113, .	3.3	2
141	Plasma transport along discrete auroral arcs and its contribution to the ionospheric plasma convection. Annales Geophysicae, 2008, 26, 3279-3293.	1.6	5
142	Electrostatic structure around spacecraft in tenuous plasmas. Journal of Geophysical Research, 2007, 112, .	3.3	55
143	RPC-LAP: The Rosetta Langmuir Probe Instrument. Space Science Reviews, 2007, 128, 729-744.	8.1	116
144	RPC-MIP: the Mutual Impedance Probe of the Rosetta Plasma Consortium. Space Science Reviews, 2007, 128, 713-728.	8.1	98

#	Article	IF	Citations
145	RPC: The Rosetta Plasma Consortium. Space Science Reviews, 2007, 128, 629-647.	8.1	135
146	Low-frequency electric field and density fluctuation measurements on Solar Orbiter. Advances in Space Research, 2007, 39, 1502-1509.	2.6	10
147	Charging of the Freja Satellite in the Auroral Zone. IEEE Transactions on Plasma Science, 2006, 34, 2038-2045.	1.3	28
148	Low-energy (order 10eV) ion flow in the magnetotail lobes inferred from spacecraft wake observations. Geophysical Research Letters, 2006, 33, .	4.0	61
149	Correction to "Low-energy (order 10 eV) ion flow in the magnetotail lobes inferred from spacecraft wake observations― Geophysical Research Letters, 2006, 33, .	4.0	1
150	Electric field measurements on Cluster: comparing the double-probe and electron drift techniques. Annales Geophysicae, 2006, 24, 275-289.	1.6	64
151	Enhancement of electric and magnetic wave fields at density gradients. Annales Geophysicae, 2006, 24, 367-379.	1.6	6
152	MEFISTO – An electric field instrument for BepiColombo/MMO. Advances in Space Research, 2006, 38, 672-679.	2.6	13
153	Double-Probe Measurements in Cold Tenuous Space Plasma Flows. IEEE Transactions on Plasma Science, 2006, 34, 2071-2077.	1.3	6
154	Wake formation behind positively charged spacecraft in flowing tenuous plasmas. Physics of Plasmas, 2006, 13, 062904.	1.9	61
155	Cassini Measurements of Cold Plasma in the Ionosphere of Titan. Science, 2005, 308, 986-989.	12.6	178
156	The inner magnetosphere of Saturn: Cassini RPWS cold plasma results from the first encounter. Geophysical Research Letters, 2005, 32, .	4.0	67
157	Precession of the whistler polarisation plane normal observed on Freja. Geophysical Research Letters, 2005, 32, .	4.0	1
158	Localization of wave fields in lower hybrid cavities. Annales Geophysicae, 2004, 22, 2951-2959.	1.6	8
159	Observations of lower hybrid cavities in the inner magnetosphere by the Cluster and Viking satellites. Annales Geophysicae, 2004, 22, 2961-2972.	1.6	18
160	Excitation of Localized Rotating Waves in Plasma Density Cavities by Scattering of Fast Magnetosonic Waves. Physical Review Letters, 2004, 92, 255002.	7.8	7
161	Lower-hybrid cavity density depletions as a result of transverse ion acceleration localized on the gyroradius scale. Journal of Geophysical Research, 2004, 109, .	3.3	19
162	Multiâ€point electric field measurements of Short Largeâ€Amplitude Magnetic Structures (SLAMS) at the Earth's quasiâ€parallel bow shock. Geophysical Research Letters, 2003, 30, .	4.0	27

#	Article	IF	Citations
163	What high altitude observations tell us about the auroral acceleration: A Cluster/DMSP conjunction. Geophysical Research Letters, 2003, 30, .	4.0	27
164	Observations of auroral broadband emissions by CLUSTER. Geophysical Research Letters, 2003, 30, .	4.0	22
165	Lower hybrid cavities in the inner magnetosphere. Geophysical Research Letters, 2003, 30, .	4.0	29
166	A statistical study of wave properties and electron density at 1700 km in the auroral region. Journal of Geophysical Research, 2002, 107, SIA 21-1-SIA 21-13.	3.3	13
167	Observation of the terrestrial bow shock in quasi-electrostatic subshock regime. Journal of Geophysical Research, 2002, 107, SSH 1-1-SSH 1-9.	3.3	22
168	A statistical study of ion energization at 1700 km in the auroral region. Annales Geophysicae, 2002, 20, 1943-1958.	1.6	17
169	The shape and evolution of lower hybrid density cavities observed by FREJA. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 2001, 26, 213-217.	0.2	4
170	LINDA – the Astrid-2 Langmuir probe instrument. Annales Geophysicae, 2001, 19, 601-610.	1.6	11
171	First results of electric field and density observations by Cluster EFW based on initial months of operation. Annales Geophysicae, 2001, 19, 1219-1240.	1.6	273
172	Cluster PEACE observations of electrons of spacecraft origin. Annales Geophysicae, 2001, 19, 1721-1730.	1.6	39
173	Physical interpretation of the Pad \tilde{A} © approximation of the plasma dispersion function. Journal of Plasma Physics, 2000, 64, 287-296.	2.1	13
174	Cavitation of lower hybrid waves in the Earth's ionosphere: A model analysis. Journal of Geophysical Research, 2000, 105, 18519-18535.	3.3	30
175	The Rosetta plasma consortium: Technical realization and scientific aims. Advances in Space Research, 1999, 24, 1149-1158.	2.6	16
176	lon energization mechanisms at 1700 km in the auroral region. Journal of Geophysical Research, 1998, 103, 4199-4222.	3.3	197
177	Effect of lower hybrid cavities on core plasma observed by Freja. Journal of Geophysical Research, 1998, 103, 4241-4249.	3.3	13
178	Broadband ELF plasma emission during auroral energization: 1. Slow ion acoustic waves. Journal of Geophysical Research, 1998, 103, 4343-4375.	3.3	119
179	Statistics of the lower hybrid wave cavities detected by the FREJA satellite. Journal of Geophysical Research, 1998, 103, 26633-26647.	3.3	36
180	Freja studies of the current-voltage relation in substorm-related events. Journal of Geophysical Research, 1998, 103, 4285-4301.	3.3	40

#	Article	IF	CITATIONS
181	Wave measurements using electrostatic probes: Accuracy evaluation by means of a multiprobe technique. Geophysical Monograph Series, 1998, , 147-153.	0.1	3
182	Lower-hybrid wave cavities detected by instrumented spacecrafts. Plasma Physics and Controlled Fusion, 1997, 39, A227-A236.	2.1	25
183	The occurrence of lower hybrid cavities in the upper ionosphere. Geophysical Research Letters, 1997, 24, 619-622.	4.0	27
184	A statistical survey of auroral solitary waves and weak double layers: 2. Measurement accuracy and ambient plasma density. Journal of Geophysical Research, 1997, 102, 11385-11398.	3.3	19
185	Lower hybrid wave cavities detected by the FREJA satellite. Journal of Geophysical Research, 1996, 101, 5299-5316.	3.3	63
186	lon cyclotron heating in the dayside magnetosphere. Journal of Geophysical Research, 1996, 101, 13179-13193.	3.3	75
187	On the current-voltage relationship in auroral breakups and westwards-travelling surges. Annales Geophysicae, 1996, 14, 1265.	1.6	8
188	Observations of an upward-directed electron beam with the perpendicular temperature of the cold ionosphere. Geophysical Research Letters, 1995, 22, 2103-2106.	4.0	47
189	Freja observatons of correlated small-scale density depletions and enhanced lower hybrid waves. Geophysical Research Letters, 1994, 21, 1843-1846.	4.0	111
190	Transverse ion energization and wave emissions observed by the Freja satellite. Geophysical Research Letters, 1994, 21, 1915-1918.	4.0	50
191	Observation of kinetic Alfvén waves by the FREJA spacecraft. Geophysical Research Letters, 1994, 21, 1847-1850.	4.0	271
192	Freja multiprobe observations of electrostatic solitary structures. Geophysical Research Letters, 1994, 21, 1827-1830.	4.0	392
193	Sub-kilometer thermal plasma structure near 1750 km altitude in the polar cusp/cleft. Geophysical Research Letters, 1994, 21, 1907-1910.	4.0	14
194	Freja observations of heating and precipitation of positive ions. Geophysical Research Letters, 1994, 21, 1911-1914.	4.0	44
195	Observations of ion acoustic fluctuations in the auroral topside ionosphere by the FREJA S/C. Geophysical Research Letters, 1994, 21, 1835-1838.	4.0	82
196	Freja observations of electromagnetic ion cyclotron ELF waves and transverse oxygen ion acceleration on auroral field lines. Geophysical Research Letters, 1994, 21, 1855-1858.	4.0	76
197	Near-Earth substorm onset: A coordinated study. Geophysical Research Letters, 1994, 21, 1875-1878.	4.0	20
198	Correction to "A statistical survey of auroral solitary waves and weak double layers, 1, Occurrence and net voltageâ€, Journal of Geophysical Research, 1994, 99, 11345.	3.3	0

A I Eriksson

#	Article	IF	CITATION
199	A statistical survey of auroral solitary waves and weak double layers: 1. Occurrence and net voltage. Journal of Geophysical Research, 1993, 98, 15521-15530.	3.3	58
200	On the importance of highâ€altitude lowâ€frequency electric fluctuations for the escape of ionospheric ions. Journal of Geophysical Research, 1990, 95, 5905-5919.	3.3	87
201	Cold and warm electrons at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 0, , .	5.1	15
202	Solar wind current sheets and deHoffmann-Teller analysis. First results from Solar Orbiter's DC electric field measurements. Astronomy and Astrophysics, 0, , .	5.1	13
203	On Positively Charged Dust in the Coma of Comet 67P. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	2
204	Observations of Modulation of Ion flux in the Coma of Comet 67P/Churyumovâ€Gerasimenko. Geophysical Research Letters, 0, , .	4.0	0