
Judith Sitters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8582402/publications.pdf

Version: 2024-02-01

LUDITH SITTERS

#	Article	IF	CITATIONS
1	Increases of Soil C, N, and P Pools Along an Acacia Tree Density Gradient and Their Effects on Trees and Grasses. Ecosystems, 2013, 16, 347-357.	3.4	73
2	Spatial stoichiometry: crossâ€ecosystem material flows and their impact on recipient ecosystems and organisms. Oikos, 2015, 124, 920-930.	2.7	66
3	Reindeer grazing increases summer albedo by reducing shrub abundance in Arctic tundra. Environmental Research Letters, 2016, 11, 125013.	5.2	63
4	Negative effects of cattle on soil carbon and nutrient pools reversed by megaherbivores. Nature Sustainability, 2020, 3, 360-366.	23.7	54
5	Interactions between <scp>C</scp> Â:Â <scp>N</scp> Â:Â <scp>P</scp> stoichiometry and soil macrofauna control dung decomposition of savanna herbivores. Functional Ecology, 2014, 28, 776-786.	3.6	53
6	Facilitative or competitive effects of woody plants on understorey vegetation depend on <scp>N</scp> â€fixation, canopy shape and rainfall. Journal of Ecology, 2013, 101, 1598-1603.	4.0	50
7	The Stoichiometry of Nutrient Release by Terrestrial Herbivores and Its Ecosystem Consequences. Frontiers in Earth Science, 2017, 5, .	1.8	50
8	Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome. Polar Biology, 2017, 40, 2265-2278.	1.2	47
9	Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Global Change Biology, 2020, 26, 2060-2071.	9.5	43
10	Fertilized graminoids intensify negative drought effects on grassland productivity. Global Change Biology, 2021, 27, 2441-2457.	9.5	39
11	Herded cattle and wild grazers partition water but share forage resources during dry years in East African savannas. Biological Conservation, 2009, 142, 738-750.	4.1	38
12	Rainfallâ€Tuned Management Facilitates Dry Forest Recovery. Restoration Ecology, 2012, 20, 33-42.	2.9	36
13	Nutrients cause grassland biomass to outpace herbivory. Nature Communications, 2020, 11, 6036.	12.8	35
14	The need for a novel integrative theory on feedbacks between herbivores, plants and soil nutrient cycling. Plant and Soil, 2015, 396, 421-426.	3.7	34
15	Interactive Effects Between Reindeer and Habitat Fertility Drive Soil Nutrient Availabilities in Arctic Tundra. Ecosystems, 2017, 20, 1266-1277.	3.4	27
16	Herbivore dung quality affects plant community diversity. Scientific Reports, 2019, 9, 5675.	3.3	18
17	An Operational Framework for the Advancement of a Molecule-to-Biosphere Stoichiometry Theory. Frontiers in Marine Science, 2017, 4, .	2.5	14
18	Impacts of Browsing and Grazing Ungulates on Soil Biota and Nutrient Dynamics. Ecological Studies, 2019, , 215-236.	1.2	12

JUDITH SITTERS

#	Article	IF	CITATIONS
19	Acacia tree density strongly affects N and P fluxes in savanna. Biogeochemistry, 2015, 123, 285-297.	3.5	10
20	A stoichiometric perspective of the effect of herbivore dung on ecosystem functioning. Ecology and Evolution, 2018, 8, 1043-1046.	1.9	10
21	Longâ€ŧerm heavy reindeer grazing promotes plant phosphorus limitation in arctic tundra. Functional Ecology, 2019, 33, 1233-1242.	3.6	10
22	Stoichiometric impact of herbivore dung versus urine on soils and plants. Plant and Soil, 2021, 462, 59-65.	3.7	8
23	Body size–fecal nutrient patterns of mammalian herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
24	Herbivore dung stoichiometry drives competition between savanna trees and grasses. Journal of Ecology, 2021, 109, 2095-2106.	4.0	6
25	Long-Term Effects of Cattle Ranching on Soil Nitrogen and Phosphorus Balances in a Savanna Ecosystem. Rangeland Ecology and Management, 2022, 84, 54-62.	2.3	3