Jiurong Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/85822/publications.pdf

Version: 2024-02-01

60 8,313 34 56 papers citations h-index g-index

66 66 11737
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Stem Cells and Progenitor Cells in Interstitial Lung Disease. , 2022, , 158-168.		2
2	The ZIP8/SIRT1 axis regulates alveolar progenitor cell renewal in aging and idiopathic pulmonary fibrosis. Journal of Clinical Investigation, 2022, 132, .	3.9	37
3	Targeting FSTL1 for Multiple Fibrotic and Systemic Autoimmune Diseases. Molecular Therapy, 2021, 29, 347-364.	3.7	18
4	Fibrinolytic niche is required for alveolar type 2 cell-mediated alveologenesis via a uPA-A6-CD44+-ENaC signal cascade. Signal Transduction and Targeted Therapy, 2021, 6, 97.	7.1	13
5	Mesenchymal growth hormone receptor deficiency leads to failure of alveolar progenitor cell function and severe pulmonary fibrosis. Science Advances, 2021, 7, .	4.7	10
6	Categorization of lung mesenchymal cells in development and fibrosis. IScience, 2021, 24, 102551.	1.9	46
7	Mitogen-activated Protein Kinase–activated Protein Kinase 2 Inhibition Attenuates Fibroblast Invasion and Severe Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 41-48.	1.4	18
8	Interleukin- 11 is a therapeutic target in idiopathic pulmonary fibrosis. Science Translational Medicine, 2019, 11 , .	5.8	189
9	Hyaluronan synthase 2–mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Science Translational Medicine, 2019, 11, .	5.8	91
10	A Long Noncoding RNA links TGF- \hat{l}^2 Signaling in Lung Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 123-125.	2.5	15
11	Proliferative regulation of alveolar epithelial type 2 progenitor cells by human <i>Scnn1d</i> gene. Theranostics, 2019, 9, 8155-8170.	4.6	12
12	PD-L1 on invasive fibroblasts drives fibrosis in a humanized model of idiopathic pulmonary fibrosis. JCI Insight, 2019, 4, .	2.3	64
13	Single-Cell Deconvolution of Fibroblast Heterogeneity in Mouse Pulmonary Fibrosis. Cell Reports, 2018, 22, 3625-3640.	2.9	392
14	CD44high alveolar type II cells show stem cell properties during steady-state alveolar homeostasis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L41-L51.	1.3	18
15	Targeted <i>HAS2</i> Expression Lessens Airway Responsiveness in Chronic Murine Allergic Airway Disease. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 702-710.	1.4	5
16	MicroRNA-29c Prevents Pulmonary Fibrosis by Regulating Epithelial Cell Renewal and Apoptosis. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 721-732.	1.4	46
17	Tsp1 promotes alveolar stem cell proliferation and its down-regulation relates to lung inflammation in intralobar pulmonary sequestration. Oncotarget, 2017, 8, 64867-64877.	0.8	8
18	miR-130b-3p Modulates Epithelial-Mesenchymal Crosstalk in Lung Fibrosis by Targeting IGF-1. PLoS ONE, 2016, 11, e0150418.	1.1	45

#	Article	IF	CITATIONS
19	Apical Secretion of FSTL1 in the Respiratory Epithelium for Normal Lung Development. PLoS ONE, 2016, 11, e0158385.	1.1	5
20	Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice. Nature Medicine, 2016, 22, 1285-1293.	15.2	211
21	Hyaluronan synthase 2 regulates fibroblast senescence in pulmonary fibrosis. Matrix Biology, 2016, 55, 35-48.	1.5	72
22	Hyaluronan as a therapeutic target in human diseases. Advanced Drug Delivery Reviews, 2016, 97, 186-203.	6.6	167
23	Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis. Journal of Clinical Investigation, 2016, 126, 3063-3079.	3.9	101
24	Methylation-mediated BMPER expression in fibroblast activation in vitro and lung fibrosis in mice in vivo. Scientific Reports, 2015, 5, 14910.	1.6	35
25	Down-regulation of USP13 mediates phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis. Respiratory Research, 2015, 16, 124.	1.4	39
26	Group B Streptococcus Evades Host Immunity by Degrading Hyaluronan. Cell Host and Microbe, 2015, 18, 694-704.	5.1	66
27	Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. Journal of Experimental Medicine, 2015, 212, 235-252.	4.2	130
28	Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. Journal of Cell Biology, 2015, 208, 2082OIA1.	2.3	0
29	G protein-coupled receptor 56 regulates matrix production and motility of lung fibroblasts. Experimental Biology and Medicine, 2014, 239, 686-696.	1.1	8
30	\hat{I}^2 -Arrestins in the Immune System. Progress in Molecular Biology and Translational Science, 2013, 118, 359-393.	0.9	21
31	Meta-Analysis of Genetic Programs between Idiopathic Pulmonary Fibrosis and Sarcoidosis. PLoS ONE, 2013, 8, e71059.	1.1	17
32	A macrophage subpopulation recruited by CC chemokine ligand-2 clears apoptotic cells in noninfectious lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L933-L940.	1.3	45
33	Long-Term Exposure of Chemokine CXCL10 Causes Bronchiolitis-like Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 592-598.	1.4	12
34	MicroRNA-127 Inhibits Lung Inflammation by Targeting IgG Fc \hat{l}^3 Receptor I. Journal of Immunology, 2012, 188, 2437-2444.	0.4	93
35	Chronic treatment $\langle i \rangle$ in vivo $\langle i \rangle$ with $\hat{l}^2 \hat{a} \in \mathbb{R}$ adrenoceptor agonists induces dysfunction of airway $\hat{l}^2 \langle \text{sub} \rangle \hat{a} \in \mathbb{R}$ drenoceptors and exacerbates lung inflammation in mice. British Journal of Pharmacology, 2012, 165, 2365-2377.	2.7	36
36	Airway Epithelial Progenitors Are Region Specific and Show Differential Responses to Bleomycin-Induced Lung Injury. Stem Cells, 2012, 30, 1948-1960.	1.4	171

#	Article	IF	Citations
37	Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. Journal of Experimental Medicine, 2011, 208, 1459-1471.	4.2	322
38	Role of hyaluronan and hyaluronan-binding proteins inÂhuman asthma. Journal of Allergy and Clinical Immunology, 2011, 128, 403-411.e3.	1.5	89
39	Recruited Exudative Macrophages Selectively Produce CXCL10 after Noninfectious Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 781-788.	1.4	57
40	\hat{l}^2 -Arrestin Deficiency Protects Against Pulmonary Fibrosis in Mice and Prevents Fibroblast Invasion of Extracellular Matrix. Science Translational Medicine, 2011, 3, 74ra23.	5.8	81
41	Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1475-83.	3.3	849
42	Hyaluronan as an Immune Regulator in Human Diseases. Physiological Reviews, 2011, 91, 221-264.	13.1	848
43	Comprehensive microRNA analysis in bleomycin-induced pulmonary fibrosis identifies multiple sites of molecular regulation. Physiological Genomics, 2011, 43, 479-487.	1.0	95
44	Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. Journal of Cell Biology, 2011, 194, i3-i3.	2.3	0
45	Regulation of Nonâ€Infectious Lung Injury, Inflammation, and Repair by the Extracellular Matrix Glycosaminoglycan Hyaluronan. Anatomical Record, 2010, 293, 982-985.	0.8	54
46	CD44 Deficiency Is Associated with Increased Bacterial Clearance but Enhanced Lung Inflammation During Gram-Negative Pneumonia. American Journal of Pathology, 2010, 177, 2483-2494.	1.9	43
47	Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4. Journal of Clinical Investigation, 2010, 120, 2049-2057.	3.9	140
48	Extracellular Superoxide Dismutase Inhibits Inflammation by Preventing Oxidative Fragmentation of Hyaluronan. Journal of Biological Chemistry, 2008, 283, 6058-6066.	1.6	159
49	CD44 Is a Negative Regulator of Acute Pulmonary Inflammation and Lipopolysaccharide-TLR Signaling in Mouse Macrophages. Journal of Immunology, 2007, 178, 2469-2475.	0.4	127
50	Hyaluronan in Tissue Injury and Repair. Annual Review of Cell and Developmental Biology, 2007, 23, 435-461.	4.0	727
51	The role of Toll-like receptors in non-infectious lung injury. Cell Research, 2006, 16, 693-701.	5.7	129
52	Innate Immune Regulation of Lung Injury and Repair. , 2006, , 110-117.		0
53	Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Medicine, 2005, 11 , $1173-1179$.	15.2	1,291
54	Regulation of pulmonary fibrosis by chemokine receptor CXCR3. Journal of Clinical Investigation, 2004, 114, 291-299.	3.9	276

#	Article	IF	CITATIONS
55	Resolution of Lung Inflammation by CD44. Science, 2002, 296, 155-158.	6.0	611
56	Defective cleavage of membrane bound TGFα leads to enhanced activation of the EGF receptor in malignant cells. Oncogene, 2000, 19, 1901-1914.	2.6	27
57	Expression of TGFα autocrine activity in human colon carcinoma CBS cells is autoregulated and independent of exogenous epidermal growth factor. Journal of Cellular Physiology, 1998, 175, 174-183.	2.0	17
58	Expression of transforming growth factor- \hat{l}^2 receptor type II and tumorigenicity in human breast adenocarcinoma MCF-7 cells. Journal of Cellular Physiology, 1998, 176, 424-434.	2.0	21
59	Autocrine Transforming Growth Factor $\hat{l}\pm$ Provides a Growth Advantage to Malignant Cells by Facilitating Re-entry into the Cell Cycle from Suboptimal Growth States. Journal of Biological Chemistry, 1998, 273, 31471-31479.	1.6	35
60	Expression of transforming growth factor- \hat{l}^2 receptor type II and tumorigenicity in human breast adenocarcinoma MCF-7 cells., 1998, 176, 424.		1