Rico F Tabor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8582115/publications.pdf

Version: 2024-02-01

256 papers 7,620 citations

42 h-index 70 g-index

260 all docs

260 docs citations

260 times ranked 8830 citing authors

#	Article	IF	Citations
1	Measurement of surface and interfacial tension using pendant drop tensiometry. Journal of Colloid and Interface Science, 2015, 454, 226-237.	9.4	704
2	Engineering nanocellulose hydrogels for biomedical applications. Advances in Colloid and Interface Science, 2019, 267, 47-61.	14.7	286
3	Paper Diagnostic for Instantaneous Blood Typing. Analytical Chemistry, 2010, 82, 4158-4164.	6.5	177
4	Modulating the zeta potential of cellulose nanocrystals using salts and surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 11-18.	4.7	143
5	Gelation mechanism of cellulose nanofibre gels: A colloids and interfacial perspective. Journal of Colloid and Interface Science, 2018, 509, 39-46.	9.4	141
6	Measurement and analysis of forces in bubble and droplet systems using AFM. Journal of Colloid and Interface Science, 2012, 371, 1-14.	9.4	138
7	Validation of Paper-Based Assay for Rapid Blood Typing. Analytical Chemistry, 2012, 84, 1661-1668.	6.5	102
8	Repulsive van der Waals Forces in Soft Matter: Why Bubbles Do Not Stick to Walls. Physical Review Letters, 2011, 106, 064501.	7.8	101
9	Pickering Emulsions Electrostatically Stabilized by Cellulose Nanocrystals. Frontiers in Chemistry, 2018, 6, 409.	3. 6	97
10	Measurement of the Hydrophobic Force in a Soft Matter System. Journal of Physical Chemistry Letters, 2013, 4, 3872-3877.	4.6	92
11	Compound sessile drops. Soft Matter, 2012, 8, 11042.	2.7	83
12	Graphene Oxide-Stabilized Oil-in-Water Emulsions: pH-Controlled Dispersion and Flocculation. Journal of Physical Chemistry C, 2014, 118, 4529-4535.	3.1	83
13	Biosurface engineering through ink jet printing. Colloids and Surfaces B: Biointerfaces, 2010, 75, 441-447.	5.0	81
14	Lubricin: A versatile, biological anti-adhesive with properties comparable to polyethylene glycol. Biomaterials, 2015, 53, 127-136.	11.4	81
15	The hydrophobic force: measurements and methods. Physical Chemistry Chemical Physics, 2014, 16, 18065-18075.	2.8	79
16	Formation and stability of nanoemulsions with mixed ionic–nonionic surfactants. Physical Chemistry Chemical Physics, 2009, 11, 9772.	2.8	75
17	Characterisation of hydrogels: Linking the nano to the microscale. Advances in Colloid and Interface Science, 2019, 274, 102044.	14.7	7 5
18	A two-step model for surfactant adsorption at solid surfaces. Journal of Colloid and Interface Science, 2010, 346, 424-428.	9.4	74

#	Article	IF	Citations
19	Strategic Approach Towards Plastic Waste Valorization: Challenges and Promising Chemical Upcycling Possibilities. ChemSusChem, 2021, 14, 4007-4027.	6.8	73
20	One-shot TEMPO-periodate oxidation of native cellulose. Carbohydrate Polymers, 2019, 226, 115292.	10.2	71
21	Mechanism of Wetting and Absorption of Water Droplets on Sized Paper:Â Effects of Chemical and Physical Heterogeneity. Langmuir, 2002, 18, 642-649.	3.5	70
22	Noncovalent Magnetic Control and Reversible Recovery of Graphene Oxide Using Iron Oxide and Magnetic Surfactants. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2124-2133.	8.0	68
23	Bubble Coalescence during Acoustic Cavitation in Aqueous Electrolyte Solutions. Langmuir, 2011, 27, 12025-12032.	3.5	66
24	Rheological behavior of high internal phase water-in-oil emulsions: Effects of droplet size, phase mass fractions, salt concentration and aging. Chemical Engineering Science, 2017, 174, 290-301.	3.8	66
25	Tuning aggregation of microemulsion droplets and silica nanoparticles using solvent mixtures. Journal of Colloid and Interface Science, 2008, 318, 244-251.	9.4	65
26	Triâ€Chain Hydrocarbon Surfactants as Designed Micellar Modifiers for Supercritical CO ₂ . Angewandte Chemie - International Edition, 2009, 48, 4993-4995.	13.8	62
27	Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. Journal of Colloid and Interface Science, 2013, 392, 237-246.	9.4	62
28	Trace Analysis and Chemical Identification on Cellulose Nanofibers-Textured SERS Substrates Using the "Coffee Ring―Effect. ACS Sensors, 2017, 2, 1060-1067.	7.8	62
29	Graphene oxide: a surfactant or particle?. Current Opinion in Colloid and Interface Science, 2019, 39, 98-109.	7.4	62
30	Effect of Solvent Quality on Aggregate Structures of Common Surfactants. Langmuir, 2008, 24, 12235-12240.	3.5	59
31	Shear Assisted Electrochemical Exfoliation of Graphite to Graphene. Langmuir, 2016, 32, 3552-3559.	3.5	59
32	Water Resistant Cellulose – Titanium Dioxide Composites for Photocatalysis. Scientific Reports, 2018, 8, 2306.	3.3	59
33	Anomalous Stability of Carbon Dioxide in pHâ€Controlled Bubble Coalescence. Angewandte Chemie - International Edition, 2011, 50, 3454-3456.	13.8	58
34	Self-Assembly of Long-Chain Betaine Surfactants: Effect of Tailgroup Structure on Wormlike Micelle Formation. Langmuir, 2018, 34, 970-977.	3.5	52
35	Atomic force microscopy: From red blood cells to immunohaematology. Advances in Colloid and Interface Science, 2017, 249, 149-162.	14.7	51
36	The effects of small molecule organic additives on the self-assembly and rheology of betaine wormlike micellar fluids. Journal of Colloid and Interface Science, 2019, 534, 518-532.	9.4	51

#	Article	IF	Citations
37	Rapid preparation of smooth nanocellulose films using spray coating. Cellulose, 2017, 24, 2669-2676.	4.9	48
38	Reversible light-induced critical separation. Soft Matter, 2009, 5, 78-80.	2.7	47
39	Gel point as a measure of cellulose nanofibre quality and feedstock development with mechanical energy. Cellulose, 2016, 23, 3051-3064.	4.9	47
40	Homo- and hetero-interactions between air bubbles and oil droplets measured by atomic force microscopy. Soft Matter, 2011, 7, 8977.	2.7	46
41	Thermal stability of bioactive enzymatic papers. Colloids and Surfaces B: Biointerfaces, 2010, 75, 239-246.	5.0	44
42	Effect of polyelectrolyte morphology and adsorption on the mechanism of nanocellulose flocculation. Journal of Colloid and Interface Science, 2016, 481, 158-167.	9.4	44
43	The Amyloid Fibrilâ€Forming Properties of the Amphibian Antimicrobial Peptide Uperinâ€3.5. ChemBioChem, 2016, 17, 239-246.	2.6	44
44	Cyclic RGDfK Peptide Functionalized Polymeric Nanocarriers for Targeting Gemcitabine to Ovarian Cancer Cells. Molecular Pharmaceutics, 2016, 13, 1491-1500.	4.6	44
45	Structural Forces in Soft Matter Systems. Journal of Physical Chemistry Letters, 2011, 2, 434-437.	4.6	43
46	Photomodulation of bacterial growth and biofilm formation using carbohydrate-based surfactants. Chemical Science, 2016, 7, 6628-6634.	7.4	43
47	Controlling the transparency and rheology of nanocellulose gels with the extent of carboxylation. Carbohydrate Polymers, 2020, 245, 116566.	10.2	43
48	Cellulose nanofibre textured SERS substrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 468, 309-314.	4.7	42
49	Bulk properties of aqueous graphene oxide and reduced graphene oxide with surfactants and polymers: adsorption and stability. Physical Chemistry Chemical Physics, 2018, 20, 16801-16816.	2.8	41
50	Combined AFMâ^'Confocal Microscopy of Oil Droplets: Absolute Separations and Forces in Nanofilms. Journal of Physical Chemistry Letters, 2011, 2, 961-965.	4.6	40
51	Producing nanofibres from carrots with a chemical-free process. Carbohydrate Polymers, 2018, 184, 307-314.	10.2	40
52	Carboxylated nanocellulose foams as superabsorbents. Journal of Colloid and Interface Science, 2019, 538, 433-439.	9.4	40
53	Effect of Gold Oxide in Measurements of Colloidal Force. Langmuir, 2011, 27, 6026-6030.	3.5	39
54	Engineering paper as a substrate for blood typing bio-diagnostics. Cellulose, 2012, 19, 1749-1758.	4.9	39

#	Article	IF	CITATIONS
55	Structural Evolution of Wormlike Micellar Fluids Formed by Erucyl Amidopropyl Betaine with Oil, Salts, and Surfactants. Langmuir, 2016, 32, 12423-12433.	3.5	39
56	Effect of cationic polyacrylamide on the processing and properties of nanocellulose films. Journal of Colloid and Interface Science, 2015, 447, 113-119.	9.4	38
57	Structure and Property Changes in Self-Assembled Lubricin Layers Induced by Calcium Ion Interactions. Langmuir, 2017, 33, 2559-2570.	3.5	38
58	Wormlike micelle formation of novel alkyl-tri(ethylene glycol)-glucoside carbohydrate surfactants: Structureâ€"function relationships and rheology. Journal of Colloid and Interface Science, 2018, 529, 464-475.	9.4	38
59	Cellulose Nano-Films as Bio-Interfaces. Frontiers in Chemistry, 2019, 7, 535.	3.6	36
60	Recent Progress in Cellulose Nanocrystal Alignment and Its Applications. ACS Applied Bio Materials, 2020, 3, 1828-1844.	4.6	36
61	Structural forces in soft matter systems: unique flocculation pathways between deformable droplets. Soft Matter, 2011, 7, 11334.	2.7	35
62	Effect of tethered and free microfibrillated cellulose (MFC) on the properties of paper composites. Cellulose, 2013, 20, 1925-1935.	4.9	35
63	Reversible pH―and Photocontrollable Carbohydrateâ€Based Surfactants. Chemistry - A European Journal, 2014, 20, 13881-13884.	3.3	35
64	A preliminary study on the stabilization of blood typing antibodies sorbed into paper. Cellulose, 2014, 21, 717-727.	4.9	35
65	Light-induced structural evolution of photoswitchable carbohydrate-based surfactant micelles. Chemical Communications, 2015, 51, 5509-5512.	4.1	35
66	Synthesis and Stability of Water-in-Oil Emulsion Using Partially Reduced Graphene Oxide as a Tailored Surfactant. Langmuir, 2017, 33, 10311-10321.	3.5	35
67	Flexible spray coating process for smooth nanocellulose film production. Cellulose, 2018, 25, 1725-1741.	4.9	35
68	Influence of Surface Roughness on Cetyltrimethylammonium Bromide Adsorption from Aqueous Solution. Langmuir, 2011, 27, 6091-6098.	3.5	34
69	Oxidized Lignin Depolymerization using Formate Ionic Liquid as Catalyst and Solvent. ChemCatChem, 2017, 9, 2684-2690.	3.7	33
70	Effects of fibre dimension and charge density on nanocellulose gels. Journal of Colloid and Interface Science, 2018, 525, 119-125.	9.4	33
71	Reversible pH Responsive Bovine Serum Albumin Hydrogel Sponge Nanolayer. Frontiers in Bioengineering and Biotechnology, 2020, 8, 573.	4.1	33
72	Heads or tails? The synthesis, self-assembly, properties and uses of betaine and betaine-like surfactants. Advances in Colloid and Interface Science, 2021, 297, 102528.	14.7	33

#	Article	IF	CITATIONS
73	Paper diagnostics in biomedicine. Reviews in Analytical Chemistry, 2013, 32, .	3.2	32
74	Decreasing the Wettability of Cellulose Nanocrystal Surfaces Using Wrinkle-Based Alignment. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15202-15211.	8.0	32
75	OpenDrop: Open-source software for pendant drop tensiometry contact angle measurements. Journal of Open Source Software, 2021, 6, 2604.	4.6	32
76	A thermo-responsive collagen-nanocellulose hydrogel for the growth of intestinal organoids. Materials Science and Engineering C, 2021, 124, 112051.	7. 3	32
77	Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics. Scientific Reports, 2017, 7, 43905.	3.3	31
78	Cellulose Dissolution in Ionic Liquid: Ion Binding Revealed by Neutron Scattering. Macromolecules, 2018, 51, 7649-7655.	4.8	31
79	Nano-mechanical properties of clay-armoured emulsion droplets. Soft Matter, 2012, 8, 3112.	2.7	30
80	Compound Pendant Drop Tensiometry for Interfacial Tension Measurement at Zero Bond Number. Langmuir, 2014, 30, 15388-15391.	3.5	29
81	Effect of surfactant type on platinum nanoparticle size of composite $Pt/\hat{l}\pm -Al2O3$ catalysts synthesized by a microemulsion method. Journal of Colloid and Interface Science, 2014, 426, 287-292.	9.4	29
82	Synthesis and Characterization of Graphene Oxide–Polystyrene Composite Capsules with Aqueous Cargo via a Water–Oil–Water Multiple Emulsion Templating Route. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 18187-18198.	8.0	29
83	Adsorption and Desorption of Nonionic Surfactants on Silica from Toluene Studied by ATR-FTIR. Langmuir, 2009, 25, 9785-9791.	3.5	28
84	Effect of the counter-ion on nanocellulose hydrogels and their superabsorbent structure and properties. Journal of Colloid and Interface Science, 2021, 599, 140-148.	9.4	28
85	Physicochemical and Biological Characterisation of Azobenzene-Containing Photoswitchable Surfactants. Bulletin of the Chemical Society of Japan, 2018, 91, 932-939.	3.2	27
86	Characterizing highly fibrillated nanocellulose by modifying the gel point methodology. Carbohydrate Polymers, 2020, 227, 115340.	10.2	27
87	Modulating transparency and colour of cellulose nanocrystal composite films by varying polymer molecular weight. Journal of Colloid and Interface Science, 2021, 584, 216-224.	9.4	27
88	Phenolic Ester-Decorated Cellulose Nanocrystals as UV-Absorbing Nanoreinforcements in Polyvinyl Alcohol Films. ACS Sustainable Chemistry and Engineering, 2021, 9, 6427-6437.	6.7	27
89	Electron Density Matching as a Guide to Surfactant Design. Langmuir, 2006, 22, 963-968.	3.5	26
90	Surface, aggregation properties and antimicrobial activity of four novel thiourea-based non-ionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 464, 104-109.	4.7	26

#	Article	IF	Citations
91	Surfactantâ€Enhanced Adsorption of Graphene Oxide for Improved Emulsification of Oil in Water. Advanced Materials Interfaces, 2017, 4, 1700803.	3.7	26
92	Rapid Gel Card Agglutination Assays for Serological Analysis Following SARS-CoV-2 Infection in Humans. ACS Sensors, 2020, 5, 2596-2603.	7.8	26
93	Gold nanoparticleâ€functionalized thread as a substrate for SERS study of analytes both bound and unbound to gold. AICHE Journal, 2014, 60, 1598-1605.	3.6	25
94	Graphene oxide–silica hybrid capsules for sustained fragrance release. Journal of Colloid and Interface Science, 2019, 552, 528-539.	9.4	25
95	Graphene Oxide Liquid Crystal Domains: Quantification and Role in Tailoring Viscoelastic Behavior. ACS Nano, 2019, 13, 8957-8969.	14.6	24
96	Grafting Natureâ€Inspired and Bioâ€Based Phenolic Esters onto Cellulose Nanocrystals Gives Biomaterials with Photostable Antiâ€UV Properties. ChemSusChem, 2020, 13, 6552-6561.	6.8	24
97	Gasâ€Generating, pHâ€Responsive Calcium Carbonate Hybrid Particles with Biomimetic Coating for Contrastâ€Enhanced Ultrasound Imaging. Particle and Particle Systems Characterization, 2020, 37, 1900471.	2.3	24
98	Light-controllable dispersion and recovery of graphenes and carbon nanotubes using a photo-switchable surfactant. Nanoscale, 2016, 8, 6969-6974.	5.6	23
99	The effects of alkylammonium counterions on the aggregation of fluorinated surfactants and surfactant ionic liquids. Journal of Colloid and Interface Science, 2016, 475, 72-81.	9.4	22
100	Lubricated Transport of Highly Viscous Non-newtonian Fluid as Core-annular Flow: A CFD Study. Procedia IUTAM, 2015, 15, 278-285.	1.2	21
101	Quantitative blood group typing using surface plasmon resonance. Biosensors and Bioelectronics, 2015, 73, 79-84.	10.1	21
102	Sweetness and light: design and applications of photo-responsive glycoconjugates. Organic and Biomolecular Chemistry, 2015, 13, 2216-2225.	2.8	21
103	Direct AFM force measurements between air bubbles in aqueous polydisperse sodium poly(styrene) Tj ETQq1 1 C Journal of Colloid and Interface Science, 2015, 449, 236-245.).784314 t 9.4	gBT /Overloo 21
104	Responsive materials based on magnetic polyelectrolytes and graphene oxide for water clean-up. Journal of Colloid and Interface Science, 2016, 464, 285-290.	9.4	21
105	Functionality of Immunoglobulin G and Immunoglobulin M Antibody Physisorbed on Cellulosic Films. Frontiers in Bioengineering and Biotechnology, 2017, 5, 41.	4.1	21
106	3D Collagen-Nanocellulose Matrices Model the Tumour Microenvironment of Pancreatic Cancer. Frontiers in Digital Health, 2021, 3, 704584.	2.8	21
107	Smooth deuterated cellulose films for the visualisation of adsorbed bio-macromolecules. Scientific Reports, 2016, 6, 36119.	3.3	20
108	Synthesis, Characterization, and Applications of Polymer–Silica Core–Shell Microparticle Capsules. ACS Applied Materials & Diterfaces, 2018, 10, 43068-43079.	8.0	20

#	Article	IF	Citations
109	Bioinspired polynorepinephrine nanoparticles as an efficient vehicle for enhanced drug delivery. Journal of Materials Chemistry B, 2020, 8, 961-968.	5.8	20
110	An energy efficient production of high moisture barrier nanocellulose/carboxymethyl cellulose films via spray-deposition technique. Carbohydrate Polymers, 2020, 250, 116911.	10.2	20
111	Spontaneous Self-Assembly of Thermoresponsive Vesicles Using a Zwitterionic and an Anionic Surfactant. Biomacromolecules, 2020, 21, 4569-4576.	5.4	20
112	Cationic Cross-Linked Nanocellulose-Based Matrices for the Growth and Recovery of Intestinal Organoids. Biomacromolecules, 2021, 22, 701-709.	5.4	20
113	Perspective on Constructing Cellulose-Hydrogel-Based Gut-Like Bioreactors for Growth and Delivery of Multiple-Strain Probiotic Bacteria. Journal of Agricultural and Food Chemistry, 2021, 69, 4946-4959.	5.2	19
114	Bio-based photo-reversible self-healing polymer designed from lignin. Green Chemistry, 2021, 23, 10050-10061.	9.0	19
115	Formation of Surfactant-Stabilized Silica Organosols. Langmuir, 2008, 24, 12793-12797.	3.5	18
116	Photorecovery of Nanoparticles from an Organic Solvent. Langmuir, 2008, 24, 1829-1832.	3.5	18
117	Time-resolved small-angle neutron scattering as a lamellar phase evolves into a microemulsion. Soft Matter, 2009, 5, 2125.	2.7	18
118	Effect of polymers on the retention and aging of enzyme on bioactive papers. Colloids and Surfaces B: Biointerfaces, 2010, 79, 88-96.	5.0	18
119	Phase Behavior, Small-Angle Neutron Scattering and Rheology of Ternary Nonionic Surfactant–Oil–Water Systems: A Comparison of Oils. Langmuir, 2013, 29, 3575-3582.	3.5	18
120	Paper engineered with cellulosic additives: effect of length scale. Cellulose, 2014, 21, 2901-2911.	4.9	18
121	Modeling two-rate adsorption kinetics: Two-site, two-species, bilayer and rearrangement adsorption processes. Journal of Colloid and Interface Science, 2016, 476, 119-131.	9.4	18
122	Bio-deuterated cellulose thin films for enhanced contrast in neutron reflectometry. Cellulose, 2017, 24, 11-20.	4.9	18
123	Highly efficient recovery of graphene oxide by froth flotation using a common surfactant. Carbon, 2018, 135, 164-170.	10.3	18
124	Effect of Bovine Serum Albumin Treatment on the Aging and Activity of Antibodies in Paper Diagnostics. Frontiers in Chemistry, 2018, 6, 161.	3.6	18
125	Kinetic Control of Aggregation Shape in Micellar Selfâ€Assembly. Angewandte Chemie - International Edition, 2019, 58, 13799-13802.	13.8	18
126	Nanocellulose Hydrogel for Blood Typing Tests. ACS Applied Bio Materials, 2019, 2, 2355-2364.	4.6	18

#	Article	IF	Citations
127	Azobenzene isomerization in condensed matter: lessons for the design of efficient light-responsive soft-matter systems. Materials Advances, 2021, 2, 4152-4164.	5.4	18
128	Simplification of gel point characterization of cellulose nano and microfiber suspensions. Cellulose, 2021, 28, 6995-7006.	4.9	18
129	Fluorinated lamellar phases: structural characterisation and use as templates for highly ordered silica materials. Soft Matter, 2014, 10, 4902-4912.	2.7	17
130	Direct AFM force measurements between air bubbles in aqueous monodisperse sodium poly(styrene) Tj ETQq0 C	0 rgBT /C	verlock 10 Tr 17
131	Strong cellulose nanofibre–nanosilica composites with controllable pore structure. Cellulose, 2017, 24, 2511-2521.	4.9	17
132	Visualization and Quantification of IgG Antibody Adsorbed at the Cellulose–Liquid Interface. Biomacromolecules, 2017, 18, 2439-2445.	5.4	17
133	Effect of protein adsorption on the radial wicking of blood droplets in paper. Journal of Colloid and Interface Science, 2018, 528, 116-123.	9.4	17
134	Capture of Perfluorooctanoic Acid Using Oil-Filled Graphene Oxide–Silica Hybrid Capsules. Environmental Science & Technology, 2020, 54, 3549-3558.	10.0	17
135	Photothermally responsive Pickering emulsions stabilised by polydopamine nanobowls. Journal of Materials Chemistry B, 2021, 9, 8962-8970.	5.8	17
136	Design and synthesis of an azobenzene–betaine surfactant for photo-rheological fluids. Journal of Colloid and Interface Science, 2021, 594, 669-680.	9.4	17
137	Recent advancements, trends, fundamental challenges and opportunities in spray deposited cellulose nanofibril films for packaging applications. Science of the Total Environment, 2022, 836, 155654.	8.0	17
138	Adsorption of cationic polyacrylamide at the cellulose–liquid interface: A neutron reflectometry study. Journal of Colloid and Interface Science, 2015, 448, 88-99.	9.4	16
139	Engineering cellulose nanofibre suspensions to control filtration resistance and sheet permeability. Cellulose, 2016, 23, 391-402.	4.9	16
140	Favored local structures in amorphous colloidal packings measured by microbeam X-ray diffraction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10344-10349.	7.1	16
141	Photoswitchable Janus glycodendrimer micelles as multivalent inhibitors of LecA and LecB from Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces, 2017, 159, 605-612.	5.0	16
142	Multi-Layer Filters: Adsorption and Filtration Mechanisms for Improved Separation. Frontiers in Chemistry, 2018, 6, 417.	3.6	16
143	Anomalous Pull-Off Forces between Surfactant-Free Emulsion Drops in Different Aqueous Electrolytes. Langmuir, 2012, 28, 4259-4266.	3.5	15
144	Evaporation of a capillary bridge between a particle and a surface. Soft Matter, 2014, 10, 8489-8499.	2.7	15

#	Article	IF	Citations
145	Paper-based assay for red blood cell antigen typing by the indirect antiglobulin test. Analytical and Bioanalytical Chemistry, 2016, 408, 5231-5238.	3.7	15
146	The role of polyaminoamide-epichlorohydrin (PAE) on antibody longevity in bioactive paper. Colloids and Surfaces B: Biointerfaces, 2017, 158, 197-202.	5.0	15
147	Structural and rheological changes of lamellar liquid crystals as a result of compositional changes and added silica nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 16592-16603.	2.8	15
148	Enhancing Printing Resolution on Hydrophobic Polymer Surfaces Using Patterned Coatings of Cellulose Nanocrystals. Langmuir, 2019, 35, 7155-7160.	3.5	15
149	Predicting coffee ring formation upon drying in droplets of particle suspensions. Journal of Colloid and Interface Science, 2021, 591, 52-57.	9.4	15
150	Bowl-Shaped Mesoporous Polydopamine Nanoparticles for Size-Dependent Endocytosis into HeLa Cells. ACS Applied Nano Materials, 2021, 4, 9536-9546.	5.0	15
151	A simple and accurate method for calculation of the structure factor of interacting charged spheres. Journal of Colloid and Interface Science, 2014, 426, 80-82.	9.4	14
152	Characterization of interfacial waves and pressure drop in horizontal oil-water core-annular flows. Physics of Fluids, 2017, 29, .	4.0	14
153	Cationic polyacrylamide induced nanoparticles assembly in a cellulose nanofiber network. Journal of Colloid and Interface Science, 2018, 529, 180-186.	9.4	14
154	Dynamics of stain growth from sessile droplets on paper. Journal of Colloid and Interface Science, 2019, 541, 312-321.	9.4	14
155	Radial Wicking of Biological Fluids in Paper. Langmuir, 2020, 36, 8209-8217.	3.5	14
156	Tuning Cellular Interactions of Carboxylic Acid-Side-Chain-Containing Polyacrylates: The Role of Cyanine Dye Label and Side-Chain Type. Biomacromolecules, 2020, 21, 3007-3016.	5.4	14
157	A rapid paper-based blood typing method from droplet wicking. Analyst, The, 2021, 146, 1048-1056.	3.5	14
158	Pattern formation in drying blood drops. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200391.	3.4	14
159	Calculation of Projected Bond-Orientational Order Parameters to Quantify Local Symmetries from Transmission Diffraction Data. Physical Review Letters, 2016, 116, 205501.	7.8	13
160	Quantitative Detection of Weak D Antigen Variants in Blood Typing using SPR. Scientific Reports, 2017, 7, 1616.	3.3	13
161	Effect of nanoparticles size and polyelectrolyte on nanoparticles aggregation in a cellulose fibrous matrix. Journal of Colloid and Interface Science, 2018, 510, 190-198.	9.4	13
162	Rapid paper diagnostic for plasma fibrinogen concentration. Analyst, The, 2019, 144, 4848-4857.	3.5	13

#	Article	IF	Citations
163	Worm-like micelles and vesicles formed by alkyl-oligo(ethylene glycol)-glycoside carbohydrate surfactants: The effect of precisely tuned amphiphilicity on aggregate packing. Journal of Colloid and Interface Science, 2019, 547, 275-290.	9.4	13
164	Rich liquid crystal phase behavior of novel alkyl-tri(ethylene glycol)-glucoside carbohydrate surfactants. Journal of Colloid and Interface Science, 2019, 540, 410-419.	9.4	13
165	High-performance homogenized and spray coated nanofibrillated cellulose-montmorillonite barriers. Cellulose, 2021, 28, 405-416.	4.9	13
166	Indirect antiglobulin paper test for red blood cell antigen typing by flow-through method. Analytical Methods, 2015, 7, 4645-4649.	2.7	12
167	Synthesis and characterisation of robust emulsion-templated silica microcapsules. Journal of Colloid and Interface Science, 2017, 505, 664-672.	9.4	12
168	Atomic Force Microscopy Force Mapping Analysis of an Adsorbed Surfactant above and below the Critical Micelle Concentration. Langmuir, 2018, 34, 7223-7239.	3.5	12
169	Polynorepinephrine as an Efficient Antifouling-Coating Material and Its Application as a Bacterial Killing Photothermal Agent. ACS Applied Bio Materials, 2020, 3, 5880-5886.	4.6	12
170	Carboxylated nanocellulose superabsorbent: Biodegradation and soil water retention properties. Journal of Applied Polymer Science, 2022, 139, 51495.	2.6	12
171	Thermoresponsive Poly(<i>N</i> -isopropylacrylamide) Grafted from Cellulose Nanofibers <i>via</i> Silver-Promoted Decarboxylative Radical Polymerization. Biomacromolecules, 2022, 23, 1610-1621.	5.4	12
172	Modulating the chiral nanoarchitecture of cellulose nanocrystals through interaction with salts and polymer. Journal of Colloid and Interface Science, 2022, 613, 207-217.	9.4	12
173	Local determination of thin liquid film profiles using colour interferometry. European Physical Journal E, 2016, 39, 14.	1.6	11
174	Mapping the distribution of specific antibody interaction forces on individual red blood cells. Scientific Reports, 2017, 7, 41956.	3.3	11
175	Efficient Cellular Internalization and Transport of Bowlâ€Shaped Polydopamine Particles. Particle and Particle Systems Characterization, 2020, 37, 2000166.	2.3	11
176	Spontaneous Adsorption of Graphene Oxide to Oil–Water and Air–Water Interfaces by Adsorption of Hydrotropes. Advanced Materials Interfaces, 2020, 7, 1901810.	3.7	11
177	Biodegradation of a Nanocellulose Superabsorbent and Its Effect on the Growth of Spinach (<i>Spinacea oleracea</i>). ACS Agricultural Science and Technology, 2022, 2, 90-99.	2.3	11
178	Adsorption and Desorption of Cationic Surfactants onto Silica from Toluene Studied by ATR-FTIR. Langmuir, 2010, 26, 671-677.	3.5	10
179	Non-linear and cyclical collisions between drops and bubbles: using AFM to understand droplet interactions in micro-scale flows. Soft Matter, 2013, 9, 2426.	2.7	10
180	Controlling the characteristics of lamellar liquid crystals using counterion choice, fluorination and temperature. Soft Matter, 2015, 11, 261-268.	2.7	10

#	Article	IF	Citations
181	Activity and Longevity of Antibody in Paper-Based Blood Typing Diagnostics. Frontiers in Chemistry, 2018, 6, 193.	3.6	10
182	Paper Diagnostic for Direct Measurement of Fibrinogen Concentration in Whole Blood. ACS Sensors, 2020, 5, 3627-3638.	7.8	10
183	Polyamide-amine-epichlorohydrin (PAE) induced TiO2 nanoparticles assembly in cellulose network. Journal of Colloid and Interface Science, 2020, 575, 317-325.	9.4	10
184	Grand challenges in chemical engineering. Frontiers in Chemistry, 2014, 2, 17.	3.6	9
185	Effect of cationic polyelectrolytes on the performance of paper diagnostics for blood typing. Colloids and Surfaces B: Biointerfaces, 2015, 133, 189-197.	5.0	9
186	Preparation of novel film-forming armoured latexes using silica nanoparticles as a pickering emulsion stabiliser. Journal of Colloid and Interface Science, 2018, 528, 289-300.	9.4	9
187	Surface Engineering of Transparent Cellulose Nanocrystal Coatings for Biomedical Applications. ACS Applied Bio Materials, 2018, 1, 728-737.	4.6	9
188	Carbon Quantum Dot Assisted Adsorption of Graphene Oxide to the Oil–Water Interface for Copper Sensing Emulsions. Advanced Materials Interfaces, 2019, 6, 1900392.	3.7	9
189	Nanocellulose for gel electrophoresis. Journal of Colloid and Interface Science, 2019, 540, 148-154.	9.4	9
190	Self-Assembly of Lubricin (PRG-4) Brushes on Graphene Oxide Affords Stable 2D-Nanosheets in Concentrated Electrolytes and Complex Fluids. ACS Applied Nano Materials, 2020, 3, 11527-11542.	5.0	9
191	Confined polymerisation of bis-thyminyl monomers within nanoreactors: towards molecular weight control. Polymer Chemistry, 2020, 11, 4326-4334.	3.9	9
192	Absorption kinetics of nanocellulose foams: Effect of ionic strength and surface charge. Journal of Colloid and Interface Science, 2021, 601, 124-132.	9.4	9
193	Shear-induced nanostructural changes in micelles formed by sugar-based surfactants with varied anomeric configuration. Journal of Colloid and Interface Science, 2022, 606, 328-336.	9.4	9
194	Norepinephrine derived carbon dots for live-cell imaging and effective hemoglobin determination. Soft Matter, 2021, 17, 6765-6772.	2.7	9
195	Local symmetry predictors of mechanical stability in glasses. Science Advances, 2022, 8, eabn0681.	10.3	9
196	On the mechanism of protein supercharging in electrospray ionisation mass spectrometry: Effects on charging of additives with short- and long-chain alkyl constituents with carbonate and sulphite terminal groups. Analytica Chimica Acta: X, 2019, 1, 100004.	1.0	8
197	Experimental studies on pipeline transportation of high internal phase emulsions using water-lubricated core-annular flow method. Chemical Engineering Science, 2020, 223, 115741.	3.8	8
198	Structural relationships for the design of responsive azobenzene-based lyotropic liquid crystals. Physical Chemistry Chemical Physics, 2020, 22, 4086-4095.	2.8	8

#	Article	IF	Citations
199	Tracking the heat-triggered phase change of polydopamine-shelled, perfluorocarbon emulsion droplets into microbubbles using neutron scattering. Journal of Colloid and Interface Science, 2022, 607, 836-847.	9.4	8
200	Cellulose nanocrystals to modulate the self-assembly of graphene oxide in suspension. Materials and Design, 2022, 216, 110572.	7.0	8
201	Enhanced photoacoustic imaging in tissue-mimicking phantoms using polydopamine-shelled perfluorocarbon emulsion droplets. Ultrasonics Sonochemistry, 2022, 86, 106041.	8.2	8
202	Exploring shear alignment of concentrated wormlike micelles using rheology coupled with small-angle neutron scattering. Physics of Fluids, 2022, 34, .	4.0	8
203	Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions. BMC Microbiology, 2016, 16, 212.	3.3	7
204	Novel In-situ Precipitation Process to Engineer Low Permeability Porous Composite. Scientific Reports, 2018, 8, 10747.	3.3	7
205	Synthesis of Lignin-based Phenol Terminated Hyperbranched Polymer. Molecules, 2019, 24, 3717.	3.8	7
206	Impact of heat drying on the physical and environmental characteristics of the nanocellulose-based films produced via spray deposition technique. Cellulose, 2020, 27, 10225-10239.	4.9	7
207	<i>In Situ</i> Nanostructural Analysis of Concentrated Wormlike Micellar Fluids Comprising Sodium Laureth Sulfate and Cocamidopropyl Betaine Using Small-Angle Neutron Scattering. Langmuir, 2020, 36, 14296-14305.	3.5	7
208	Linear Bioâ€Based Water Soluble Aromatic Polymers from Syringic Acid, S Type Degradation Fragment from Lignin. Journal of Polymer Science, 2020, 58, 540-547.	3.8	7
209	Exploring the transition of polydopamine-shelled perfluorohexane emulsion droplets into microbubbles using small- and ultra-small-angle neutron scattering. Physical Chemistry Chemical Physics, 2021, 23, 9843-9850.	2.8	7
210	Effective Lignin Utilization Strategy: Major Depolymerization Technologies, Purification Process and Production of Valuable Material. Chemistry Letters, 2021, 50, 1123-1130.	1.3	7
211	Moulding of micropatterned nanocellulose films and their application in fluid handling. Journal of Colloid and Interface Science, 2021, 587, 162-172.	9.4	7
212	Deuterated Bacterial Cellulose Dissolution in Ionic Liquids. Macromolecules, 2021, 54, 6982-6989.	4.8	7
213	Spontaneous surface adsorption of aqueous graphene oxide by synergy with surfactants. Physical Chemistry Chemical Physics, 2022, 24, 797-806.	2.8	7
214	Synthesis and Characterization of Polyethylenimine–Silica Nanocomposite Microparticles. Langmuir, 2022, 38, 191-202.	3.5	7
215	Mesoporous Polydopamine Nanobowls Toward Combined Chemo―and Photothermal Cancer Therapy. Particle and Particle Systems Characterization, 2022, 39, .	2.3	7
216	Interpreting atomic force microscopy measurements of hydrodynamic and surface forces with nonlinear parametric estimation. Review of Scientific Instruments, 2012, 83, 103702.	1.3	6

#	Article	lF	CITATIONS
217	Study of Fluid and Transport Properties of Porous Anodic Aluminum Membranes by Dynamic Atomic Force Microscopy. Langmuir, 2013, 29, 8969-8977.	3.5	6
218	Measuring and modelling the adsorption kinetics of polydisperse PiBSA-based emulsifiers using dynamic interfacial tension measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126728.	4.7	6
219	Nanocrystallisation and self-assembly of biosourced ferulic acid derivative in polylactic acid elastomeric blends. Journal of Colloid and Interface Science, 2022, 606, 1842-1851.	9.4	6
220	Photo-switchable membranes constructed from graphene oxide/star-PDMS nanocomposites for gas permeation control. Journal of Materials Chemistry A, 2021, 9, 21167-21174.	10.3	6
221	Synthesis and characterisation of polynorepinephrine-shelled microcapsules <i>via</i> an oil-in-water emulsion templating route. Journal of Materials Chemistry B, 2021, 9, 9575-9582.	5.8	6
222	Surface defects on wrinkled PDMS induce droplet anisotropy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128317.	4.7	6
223	Sphere to rod transitions in self assembled systems probed using direct force measurement. Soft Matter, 2015, 11, 1303-1314.	2.7	5
224	Photothermal incubation of red blood cells by laser for rapid pre-transfusion blood group typing. Scientific Reports, 2019, 9, 11221.	3.3	5
225	Tuning the structure, thermal stability and rheological properties of liquid crystal phases via the addition of silica nanoparticles. Physical Chemistry Chemical Physics, 2019, 21, 25649-25657.	2.8	5
226	Rapid, hand-held paper diagnostic for measuring Fibrinogen Concentration in blood. Analytica Chimica Acta, 2020, 1102, 72-83.	5. 4	5
227	Ultrasound-assisted fabrication of acoustically active, erythrocyte membrane "bubbles― Ultrasonics Sonochemistry, 2021, 72, 105429.	8.2	5
228	Carbon dots as a †green' reagent to produce shape and size controlled gold nanoparticles for application in pollutant degradation. Colloids and Interface Science Communications, 2022, 46, 100571.	4.1	5
229	Determination of xylooligosaccharides produced from enzymatic hydrolysis of beechwood xylan using high-performance anion-exchange chromatography tandem mass spectrometry. Journal of Chromatography A, 2022, 1666, 462836.	3.7	5
230	Bidisperse colloids: Nanoparticles and microemulsions in coexistence. Journal of Colloid and Interface Science, 2010, 344, 447-450.	9.4	4
231	Analysis of Perforin Assembly by Quartz Crystal Microbalance Reveals a Role for Cholesterol and Calcium-independent Membrane Binding. Journal of Biological Chemistry, 2015, 290, 31101-31112.	3.4	4
232	Direct measurement of IgMâ€"Antigen interaction energy on individual red blood cells. Colloids and Surfaces B: Biointerfaces, 2017, 155, 373-378.	5.0	4
233	Localisation of alkaline phosphatase in the pore structure of paper. Colloid and Polymer Science, 2017, 295, 1293-1304.	2.1	4
234	Enhanced Thermal Conductivity of High Internal Phase Emulsions with Ultra-Low Volume Fraction of Graphene Oxide. Langmuir, 2019, 35, 2738-2746.	3.5	4

#	Article	IF	CITATIONS
235	Fibrinogen Diagnostics in Major Hemorrhage. Critical Reviews in Analytical Chemistry, 2022, 52, 194-209.	3.5	4
236	Rapidly freezeâ€dried human red blood cells for preâ€transfusion alloantibody testing reagents. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1689-1697.	3.4	4
237	Structure of wood extract colloids and effect of CaCl2 on the molecular mobility. Nordic Pulp and Paper Research Journal, 2012, 27, 639-646.	0.7	4
238	Surfactants and nanoscience., 2022,, 153-182.		4
239	Duffy blood group (Fya & Duffy) analysis using surface plasmon resonance. Biomedical Microdevices, 2016, 18, 101.	2.8	3
240	Open–Closed Structure of Light-Responsive Protein LOV2 Regulates Its Molecular Interaction with a Binding Partner. Journal of Physical Chemistry Letters, 2020, 11, 8647-8653.	4.6	3
241	Influence of Size and Chemical Additives on the Fabrication of Micropattern Nanocellulose Films. ACS Sustainable Chemistry and Engineering, 2021, 9, 11714-11723.	6.7	3
242	Droplet-based blood group antibody screening with laser incubation. Analyst, The, 2021, 146, 2499-2505.	3.5	3
243	Wash-free paper diagnostics for the rapid detection of blood type antibodies. Analyst, The, 2021, 146, 6970-6980.	3.5	3
244	Column Agglutination Assay Using Polystyrene Microbeads for Rapid Detection of Antibodies against SARS-CoV-2. ACS Applied Materials & SARS-COV-2. ACS APPLIED	8.0	3
245	A study of different actions of glucanases to modulate microfibrillated cellulose properties. Cellulose, 2022, 29, 2323-2332.	4.9	3
246	Chemometric optimisation of enzymatic hydrolysis of beechwood xylan to target desired xylooligosaccharides. Bioresource Technology, 2022, 352, 127041.	9.6	3
247	Effect of crosslinking on nanocellulose superabsorbent biodegradability. Carbohydrate Polymer Technologies and Applications, 2022, 3, 100199.	2.6	3
248	Structure–Performance Relationships for Tail Substituted Zwitterionic Betaine–Azobenzene Surfactants. Langmuir, 2022, 38, 7522-7534.	3.5	3
249	pH-responsive pitted polymer particles with surface morphologies from cup shaped to multicavities. Colloid and Polymer Science, 2021, 299, 1717-1728.	2.1	2
250	Next-Generation Colloidal Materials for Ultrasound Imaging Applications. Ultrasound in Medicine and Biology, 2022, 48, 1373-1396.	1.5	2
251	Kinetic Control of Aggregation Shape in Micellar Selfâ€Assembly. Angewandte Chemie, 2019, 131, 13937-13940.	2.0	1
252	Topologically Controlled Synthesis of Reversible Macrocyclic Compounds in Microemulsions. Journal of Organic Chemistry, 2019, 84, 8596-8601.	3.2	1

#	Article	IF	CITATIONS
253	Surfactant-controlled crystal growth of metal–organic frameworks and their nanoparticle pyrolysis products. Materialia, 2020, 13, 100849.	2.7	1
254	Grafting Natureâ€Inspired and Bioâ€Based Phenolic Esters onto Cellulose Nanocrystals Gives Biomaterials with Photostable Antiâ€UV Properties. ChemSusChem, 2020, 13, 6460-6460.	6.8	1
255	Directly probing surfactant adsorption on nanoscopic trenches and pillars. Journal of Colloid and Interface Science, 2020, 579, 128-139.	9.4	1
256	Frequency Dependent Silica Dissolution Rate Enhancement under Oscillating Pressure via an Electrochemical Pressure Solution-like, Surface Resonance Mechanism. Journal of the American Chemical Society, 2022, 144, 3875-3891.	13.7	1