Xj Zhang Or Zhang Xj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8582045/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Research, 2010, 3, 643-652.	5.8	534
2	Magnetic Chitosan Nanocomposites: A Useful Recyclable Tool for Heavy Metal Ion Removal. Langmuir, 2009, 25, 3-8.	1.6	480
3	Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. Journal of Materials Chemistry, 2011, 21, 3422.	6.7	430
4	Non-enzymatic electrochemical sensing of glucose. Mikrochimica Acta, 2013, 180, 161-186.	2.5	427
5	High-Power and High-Energy-Density Flexible Pseudocapacitor Electrodes Made from Porous CuO Nanobelts and Single-Walled Carbon Nanotubes. ACS Nano, 2011, 5, 2013-2019.	7.3	340
6	Different CuO Nanostructures: Synthesis, Characterization, and Applications for Glucose Sensors. Journal of Physical Chemistry C, 2008, 112, 16845-16849.	1.5	215
7	Cobalt Oxide Nanowall Arrays on Reduced Graphene Oxide Sheets with Controlled Phase, Grain Size, and Porosity for Li-Ion Battery Electrodes. Journal of Physical Chemistry C, 2011, 115, 8400-8406.	1.5	196
8	Superior performance asymmetric supercapacitors based on ZnCo ₂ O ₄ @MnO ₂ core–shell electrode. Journal of Materials Chemistry A, 2015, 3, 5442-5448.	5.2	158
9	CuS nanotubes for ultrasensitive nonenzymatic glucose sensors. Chemical Communications, 2008, , 5945.	2.2	147
10	Three-dimensional Co3O4@NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances. Chemical Engineering Journal, 2016, 304, 223-231.	6.6	146
11	Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosensors and Bioelectronics, 2009, 24, 3395-3398.	5.3	141
12	Enzyme-free amperometric sensing of glucose using Cu-CuO nanowire composites. Mikrochimica Acta, 2010, 168, 87-92.	2.5	130
13	Dual Amplification Strategy for the Fabrication of Highly Sensitive Interleukin-6 Amperometric Immunosensor Based on Poly-Dopamine. Langmuir, 2011, 27, 1224-1231.	1.6	123
14	Detection of hydrazine based on Nano-Au deposited on Porous-TiO2 film. Electrochimica Acta, 2010, 55, 7204-7210.	2.6	121
15	One-step ultrasonic synthesis of graphene quantum dots with high quantum yield and their application in sensing alkaline phosphatase. Chemical Communications, 2015, 51, 948-951.	2.2	117
16	Fabrication and Characterization of Fe3O4 Octahedrons via an EDTA-Assisted Route. Crystal Growth and Design, 2007, 7, 2117-2119.	1.4	109
17	Silver Oxide Nanowalls Grown on Cu Substrate as an Enzymeless Glucose Sensor. ACS Applied Materials & Interfaces, 2009, 1, 2829-2834.	4.0	109
18	NiCo ₂ O ₄ @MnMoO ₄ core–shell flowers for high performance supercapacitors. Journal of Materials Chemistry A, 2016, 4, 8249-8254.	5.2	105

#	Article	IF	CITATIONS
19	Optical and electrochemical properties of nanosized CuO via thermal decomposition of copper oxalate. Solid-State Electronics, 2008, 52, 245-248.	0.8	95
20	Seed-Mediated Growth Method for Epitaxial Array of CuO Nanowires on Surface of Cu Nanostructures and Its Application as a Glucose Sensor. Journal of Physical Chemistry C, 2008, 112, 8856-8862.	1.5	93
21	Copper oxide nanoarray based on the substrate of Cu applied for the chemical sensor of hydrazine detection. Electrochemistry Communications, 2009, 11, 631-634.	2.3	90
22	Fabrication of CuO nanowalls on Cu substrate for a high performance enzyme-free glucose sensor. CrystEngComm, 2010, 12, 1120-1126.	1.3	88
23	A "turn-on―carbon nanotube–Ag nanoclusters fluorescent sensor for sensitive and selective detection of Hg ²⁺ with cyclic amplification of exonuclease III activity. Chemical Communications, 2014, 50, 747-750.	2.2	88
24	Hierarchical structures composed of MnCo ₂ O ₄ @MnO ₂ core–shell nanowire arrays with enhanced supercapacitor properties. Dalton Transactions, 2016, 45, 572-578.	1.6	88
25	Portable Aptasensor of Aflatoxin B1 in Bread Based on a Personal Glucose Meter and DNA Walking Machine. ACS Sensors, 2018, 3, 1368-1375.	4.0	88
26	Construction of unique Co ₃ O ₄ @CoMoO ₄ core/shell nanowire arrays on Ni foam by the action exchange method for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 14578-14584.	5.2	84
27	Novel Hierarchical Nanostructures of Nickel:  Self-Assembly of Hexagonal Nanoplatelets. Journal of Physical Chemistry C, 2007, 111, 601-605.	1.5	81
28	Ultrafine nickel–copper carbonate hydroxide hierarchical nanowire networks for high-performance supercapacitor electrodes. Chemical Engineering Journal, 2016, 290, 353-360.	6.6	79
29	Naked-eye sensitive detection of alkaline phosphatase (ALP) and pyrophosphate (PPi) based on a horseradish peroxidase catalytic colorimetric system with Cu(<scp>ii</scp>). Analyst, The, 2016, 141, 5549-5554.	1.7	76
30	Porous Cu–NiO modified glass carbon electrode enhanced nonenzymatic glucose electrochemical sensors. Analyst, The, 2011, 136, 5175.	1.7	75
31	An amplified electrochemical aptasensor based on hybridization chain reactions and catalysis of silver nanoclusters. Nanoscale, 2015, 7, 3300-3308.	2.8	75
32	Preparation and Characterization of Fe ₃ O ₄ /CdS Nanocomposites and Their Use as Recyclable Photocatalysts. Crystal Growth and Design, 2009, 9, 197-202.	1.4	74
33	Hierarchical NiMn ₂ O ₄ @CNT nanocomposites for high-performance asymmetric supercapacitors. RSC Advances, 2015, 5, 24607-24614.	1.7	73
34	A Novel Chemical Reduction Route towards the Synthesis of Crystalline Nickel Nanoflowers from a Mixed Source. European Journal of Inorganic Chemistry, 2005, 2005, 4788-4793.	1.0	71
35	Controlled Synthesis of Sb Nanostructures and Their Conversion to CoSb ₃ Nanoparticle Chains for Li-lon Battery Electrodes. Chemistry of Materials, 2010, 22, 5333-5339.	3.2	69
36	Microwave-Assisted Synthesis and Photocatalytic Properties of Carbon Nanotube/Zinc Sulfide Heterostructures. Journal of Physical Chemistry C, 2008, 112, 16779-16783.	1.5	67

#	Article	IF	CITATIONS
37	Ultrathin trimetallic metal–organic framework nanosheets for highly efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 14163-14168.	5.2	67
38	Low-temperature fabrication of MnFe2O4 octahedrons: Magnetic and electrochemical properties. Chemical Physics Letters, 2006, 426, 120-123.	1.2	66
39	Synthesis of CuO nanoflower and its application as a H2O2 sensor. Bulletin of Materials Science, 2010, 33, 17-20.	0.8	64
40	Copper Dendrites: Synthesis, Mechanism Discussion, and Application in Determination of <scp>l</scp> -Tyrosine. Crystal Growth and Design, 2008, 8, 1430-1434.	1.4	63
41	3D porous gear-like copper oxide and their high electrochemical performance as supercapacitors. CrystEngComm, 2013, 15, 7657.	1.3	63
42	Ultrathin porous nickel–cobalt hydroxide nanosheets for high-performance supercapacitor electrodes. RSC Advances, 2015, 5, 17007-17013.	1.7	62
43	Ultrasensitive IL-6 electrochemical immunosensor based on Au nanoparticles-graphene-silica biointerface. Colloids and Surfaces B: Biointerfaces, 2014, 116, 714-719.	2.5	56
44	Synthesis and electrochemical properties of different sizes of the CuO particles. Journal of Nanoparticle Research, 2008, 10, 839-844.	0.8	53
45	High electrochemical performance based on ultrathin porous CuO nanobelts grown on Cu substrate as integrated electrode. Physical Chemistry Chemical Physics, 2013, 15, 521-525.	1.3	52
46	Three-dimensional NiCo ₂ O ₄ @NiMoO ₄ core/shell nanowires for electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 12069-12075.	5.2	51
47	Ultrathin NiCo Bimetallic Molybdate Nanosheets Coated CuO <i>_x</i> Nanotubes: Heterostructure and Bimetallic Synergistic Optimization of the Active Site for Highly Efficient Overall Water Splitting. Advanced Energy Materials, 2021, 11, 2102361.	10.2	50
48	An unusual H2O2 electrochemical sensor based on Ni(OH)2 nanoplates grown on Cu substrate. Electrochimica Acta, 2010, 55, 7182-7187.	2.6	49
49	Detection of T4 polynucleotide kinase activity with immobilization of TiO2 nanotubes and amplification of Au nanoparticles. Biosensors and Bioelectronics, 2013, 43, 125-130.	5.3	48
50	Portable aptamer biosensor of platelet-derived growth factor-BB using a personal glucose meter with triply amplified. Biosensors and Bioelectronics, 2017, 95, 152-159.	5.3	48
51	A "turn-on―silver nanocluster based fluorescent sensor for folate receptor detection and cancer cell imaging under visual analysis. Chemical Communications, 2015, 51, 11810-11813.	2.2	47
52	Electrochemical immunosensor with graphene/gold nanoparticles platform and ferrocene derivatives label. Talanta, 2013, 103, 75-80.	2.9	43
53	Photoinduced electron transfer (PET) based label-free aptasensor for platelet-derived growth factor-BB and its logic gate application. Biosensors and Bioelectronics, 2015, 63, 552-557.	5.3	43
54	Preparation of Fe (core)/SiO2 (shell) composite particles with improved oxidation-resistance. Materials Research Bulletin, 2006, 41, 1424-1429.	2.7	42

#	Article	IF	CITATIONS
55	A supersandwich multienzyme–DNA label based electrochemical immunosensor. Chemical Communications, 2012, 48, 720-722.	2.2	41
56	A folate receptor electrochemical sensor based on terminal protection and supersandwich DNAzyme amplification. Biosensors and Bioelectronics, 2013, 42, 337-341.	5.3	40
57	Co-doped SnS2 nanosheet array for efficient oxygen evolution reaction electrocatalyst. Journal of Materials Science, 2019, 54, 13715-13723.	1.7	39
58	One-step preparation of copper nanorods with rectangular cross sections. Solid State Communications, 2006, 139, 412-414.	0.9	37
59	Generalized and Facile Synthesis of Fe3O4/MS (M = Zn, Cd, Hg, Pb, Co, and Ni) Nanocomposites. Journal of Physical Chemistry C, 2008, 112, 12728-12735.	1.5	37
60	An ultrasensitive electrochemical method for detection of Ag+ based on cyclic amplification of exonucleaseÂIII activity on cytosine–Ag+–cytosine. Analyst, The, 2013, 138, 6900.	1.7	37
61	Controllable synthesis of silver nanodendrites on copper rod and its application to hydrogen peroxide and glucose detection. CrystEngComm, 2013, 15, 1173-1178.	1.3	34
62	A label-free and enzyme-free ultra-sensitive transcription factors biosensor using DNA-templated copper nanoparticles as fluorescent indicator and hairpin DNA cascade reaction as signal amplifier. Biosensors and Bioelectronics, 2016, 82, 85-92.	5.3	34
63	Gold nanoparticles/l-cysteine/graphene composite based immobilization strategy for an electrochemical immunosensor. Analytical Methods, 2010, 2, 1692.	1.3	33
64	Nonenzymatic glucose sensor based on Cu–Cu2S nanocomposite electrode. Electrochemistry Communications, 2012, 24, 53-56.	2.3	33
65	Electrically contacted enzyme based on dual hairpin DNA structure and its application for amplified detection of Hg2+. Biosensors and Bioelectronics, 2012, 35, 108-114.	5.3	33
66	Synthesis and electrochemical properties of CuO nanobelts. Materials Chemistry and Physics, 2008, 112, 726-729.	2.0	31
67	Flexible superior electrode architectures based on three-dimensional porous spinous α-Fe ₂ O ₃ with a high performance as a supercapacitor. Dalton Transactions, 2015, 44, 9581-9587.	1.6	31
68	Iron Doped in the Subsurface of CuS Nanosheets by Interionic Redox: Highly Efficient Electrocatalysts toward the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 16210-16217.	4.0	31
69	Application of gold nanoparticles/TiO2 modified electrode for the electrooxidative determination of catechol in tea samples. Food Chemistry, 2012, 135, 446-451.	4.2	29
70	Synthesize Thickness Copper (I) Sulfide nanoplates on Copper Rod and It's Application as Nonenzymatic Cholesterol Sensor. Electrochimica Acta, 2014, 130, 239-244.	2.6	29
71	Synthesis and characterization of CoFe2O4 octahedrons via an EDTA-assisted route. Journal of Magnetism and Magnetic Materials, 2006, 305, 68-70.	1.0	28
72	Enhanced electrochemical catalytic activity of new nickel hydroxide nanostructures with (100) facet. CrystEngComm, 2011, 13, 188-192.	1.3	28

#	Article	IF	CITATIONS
73	Microwave-assisted synthesis and magnetic properties of size-controlled CoNi/MWCNT nanocomposites. Journal of Alloys and Compounds, 2011, 509, 1261-1265.	2.8	28
74	Development of an electrochemical sensor based on the catalysis of ferrocene actuated hemin/G-quadruplex enzyme for the detection of potassium ions. Biosensors and Bioelectronics, 2014, 61, 410-416.	5.3	26
75	Anion-exchange reaction synthesized CoNi ₂ S ₄ nanowires for superior electrochemical performances. RSC Advances, 2015, 5, 84974-84979.	1.7	26
76	Detection of T4 polynucleotide kinase based on a MnO ₂ nanosheet-3,3′,5,5′-tetramethylbenzidine (TMB) colorimetric system. Analytical Methods, 2016, 8, 4119-4126.	1.3	26
77	Carbon fiber/Ni-Co layered double hydroxide@NiMoO4/graphene oxide sandwich structure flexible electrode materials: Facile synthesis and high supercapacitor performance. Journal of Alloys and Compounds, 2019, 794, 13-20.	2.8	26
78	Preparation of porous Cu2O octahedron and its application as L-Tyrosine sensors. Solid State Communications, 2008, 148, 525-528.	0.9	25
79	Synthesis and photocatalytic characterization of porous cuprous oxide octahedra. Materials Letters, 2008, 62, 4363-4365.	1.3	25
80	Electrocatalytic oxidation of hydrazine at a glassy carbon electrode modified with nickel ferrite and multi-walled carbon nanotubes. Mikrochimica Acta, 2011, 175, 145-150.	2.5	25
81	A Simple, Fast, and Sensitive Assay for the Detection of DNA, Thrombin, and Adenosine Triphosphate Based on Dual-Hairpin DNA Structure. Langmuir, 2013, 29, 14328-14334.	1.6	25
82	Detection of polynucleotide kinase activity by using a gold electrode modified with magnetic microspheres coated with titanium dioxide nanoparticles and a DNA dendrimer. Analyst, The, 2014, 139, 3895.	1.7	25
83	Synthesis and magnetic properties of size-controlled FeNi alloy nanoparticles attached on multiwalled carbon nanotubes. Journal of Physics and Chemistry of Solids, 2010, 71, 290-295.	1.9	24
84	Amplified and selective detection of Ag+ ions based on electrically contacted enzymes on duplex-like DNA scaffolds. Biosensors and Bioelectronics, 2014, 59, 269-275.	5.3	24
85	Cupreous oxide nanobelts as detector for determination of l-Tyrosine. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 156, 6-9.	1.7	21
86	DNA–gold nanoparticles network based electrochemical biosensors for DNA MTase activity. Talanta, 2016, 152, 228-235.	2.9	21
87	Gold nanoparticle aggregation: Colorimetric detection of the interactions between avidin and biotin. Talanta, 2018, 185, 106-112.	2.9	21
88	Microwave-assisted synthesis of Zn x Cd1â^'x S–MWCNT heterostructures and their photocatalytic properties. Journal of Nanoparticle Research, 2011, 13, 2225-2234.	0.8	20
89	Electrochemical amplified detection of Hg2+ based on the supersandwich DNA structure. Analyst, The, 2012, 137, 2036.	1.7	20
90	Conformational switch for cisplatin with hemin/G-quadruplex DNAzyme supersandwich structure. Biosensors and Bioelectronics, 2013, 50, 210-216.	5.3	20

#	Article	IF	CITATIONS
91	Synthesis of TiO2-doped SiO2 composite films and its applications. Bulletin of Materials Science, 2008, 31, 787-790.	0.8	19
92	TTE DNA–Cu NPs: enhanced fluorescence and application in a target DNA triggered dual-cycle amplification biosensor. Chemical Communications, 2017, 53, 5629-5632.	2.2	19
93	Prussian blue–Au nanocomposites actuated hemin/G-quadruplexes catalysis for amplified detection of DNA, Hg ²⁺ and adenosine triphosphate. Analyst, The, 2014, 139, 5297-5303.	1.7	18
94	Novel ultrasensitive homogeneous electrochemical aptasensor based on dsDNA-templated copper nanoparticles for the detection of ractopamine. Journal of Materials Chemistry B, 2017, 5, 53-61.	2.9	18
95	Target triggered ultrasensitive electrochemical polychlorinated biphenyl aptasensor based on DNA microcapsules and nonlinear hybridization chain reaction. Analyst, The, 2020, 145, 3598-3604.	1.7	18
96	Synthesis hexagonal ß-Ni(OH)2 nanosheets for use in electrochemistry sensors. Mikrochimica Acta, 2009, 167, 47-52.	2.5	17
97	Electrodeposition method synthesise gold nanoparticles–Prussian blue–graphene nanocomposite and its application in electrochemical sensor for H2O2. Micro and Nano Letters, 2012, 7, 60.	0.6	17
98	Colorimetric and visual determination of melamine by exploiting the conformational change of hemin G-quadruplex-DNAzyme. Mikrochimica Acta, 2014, 181, 411-418.	2.5	17
99	Ultrathin Zinc Oxide Nanofilm on Zinc Substrate for High Performance Electrochemical Sensors. Electrochimica Acta, 2014, 144, 186-193.	2.6	17
100	Target-induced quenching for highly sensitive detection of nucleic acids based on label-free luminescent supersandwich DNA/silver nanoclusters. Analyst, The, 2014, 139, 165-169.	1.7	16
101	One-strand oligonucleotide probe for fluorescent label-free "turn-on―detection of T4 polynucleotide kinase activity and its inhibition. Analyst, The, 2015, 140, 5650-5655.	1.7	16
102	Uniform hierarchical SnS microspheres: Solvothermal synthesis and lithium ion storage performance. Materials Research Bulletin, 2013, 48, 4935-4941.	2.7	15
103	A ratiometric colorimetric detection of the folate receptor based on terminal protection of small-molecule-linked DNA. Analyst, The, 2015, 140, 1260-1264.	1.7	15
104	Hierarchical ZnO@MnO2@PPy ternary core–shell nanorod arrays: an efficient integration of active materials for energy storage. RSC Advances, 2015, 5, 39864-39869.	1.7	15
105	Label-free electrochemiluminescent detection of transcription factors with hybridization chain reaction amplification. RSC Advances, 2016, 6, 37681-37688.	1.7	14
106	Effective Electrocatalysis Based on Ag ₂ O Nanowire Arrays Supported on a Copper Substrate. ACS Applied Materials & Interfaces, 2013, 5, 10465-10472.	4.0	13
107	Morphology-controllable synthesis of 3D firecracker-like ZnO nanoarchitectures for high catalytic performance. CrystEngComm, 2015, 17, 1121-1128.	1.3	13
108	Three-Dimensional Co ₃ O ₄ @NiCo ₂ S ₄ Core/Shell Nanoflower Array with Enhanced Electrochemical Performance. ChemistrySelect, 2017, 2, 9537-9545.	0.7	13

#	Article	IF	CITATIONS
109	Non-enzymatic glucose detection using Ni/multi-walled carbon nanotubes composite. Micro and Nano Letters, 2012, 7, 168.	0.6	12
110	Seed-mediated Preparation of CuO Nanoflowers and their Application as Hydrazine Sensor. Chemistry Letters, 2009, 38, 466-467.	0.7	11
111	Dual functional electrochemical sensor based on Au–polydopamine–Fe3O4 nanocomposites. Analytical Methods, 2011, 3, 2475.	1.3	11
112	General ion-exchanged method synthesized 3D heterostructured MCo2O4/Co3O4 nanocomposites (M=) Tj ETQq	0 0 0 rgB1 2.8	Overlock 11
113	Amperometric Detection of Hydrogen Peroxide Using Glassy Carbon Electrodes Modified with Chromium Hexacyanoferrate/Singleâ€Walled Carbon Nanotube Nanocomposites. Electroanalysis, 2009, 21, 179-183.	1.5	9
114	Preparation of CuO-Nanoparticle-Modified Electrode and Its Application in the Determination of Rutin. Analytical Letters, 2009, 42, 1084-1093.	1.0	9
115	Controlled Synthesis of Ag/Ag/C Hybrid Nanostructures and their Surfaceâ€Enhanced Raman Scattering Properties. Chemistry - A European Journal, 2011, 17, 13386-13390.	1.7	9
116	Fabrication and Characterization of Porous Copper Nanorods with Rectangular Cross Sections. Chemistry Letters, 2006, 35, 1142-1143.	0.7	8
117	A simple label-free electrochemical method for the detection of polynucleotide kinase activity by a peroxidase mimic: TiO2 nanotube array. Analytical Methods, 2015, 7, 10345-10349.	1.3	8
118	Copper(ii) doped nanoporous TiO2 composite based glucose biosensor. Analytical Methods, 2011, 3, 2611.	1.3	7
119	Au NPs–Ni(OH)2–Cu nanocomposites enhanced electrochemical properties for detection of H2O2. Analytical Methods, 2012, 4, 496.	1.3	7
120	Detection of heparin based on the conformational switch of DNA. Analytical Methods, 2015, 7, 7852-7857.	1.3	7
121	[G3T]5/Tb3+ based DNA biosensor with target DNA-triggered autocatalytic multi-cycle-amplification and magnetic nanoparticles assisted-background-lowered. Biosensors and Bioelectronics, 2015, 74, 931-938.	5.3	7
122	Deposition of fan-shaped ZnMoO4 on ZnCo2O4 nanowire arrays for high electrochemical performance. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	7
123	Synthesis and optical properties of Cu2O/SiO2 composite films via gamma-irradiation route. Materials Letters, 2007, 61, 248-250.	1.3	6
124	Luminescent CuS nanotubes as silver ion probes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 72, 1071-1075.	2.0	6
125	Hydrogen Peroxide Sensor Based on Carbon Nanotubes/ <i>β</i> â€Ni(OH) ₂ Nanocomposites. Chinese Journal of Chemistry, 2012, 30, 501-506.	2.6	6
126	Synthesis of Ni(OH)2 nanoplates on Cu rod and its applications for electrochemical sensors. Materials Research Bulletin, 2013, 48, 3729-3734.	2.7	6

#	Article	IF	CITATIONS
127	Adenosine Triphosphate Sensing by Electrocatalysis with DNAzyme. Electroanalysis, 2014, 26, 312-318.	1.5	6
128	Dual hairpin-like molecular beacon based on coralyne-adenosine interaction for sensing melamine in dairy products. Talanta, 2014, 129, 398-403.	2.9	6
129	Synthesis and Charaterization of Hexagonal-like Fe3O4via Glycothermal Route. Chemistry Letters, 2005, 34, 240-241.	0.7	5
130	Synthesis of Cu/SiO2 composite films via gamma-irradiation route and their optical absorption properties. Materials Research Bulletin, 2008, 43, 2421-2426.	2.7	5
131	Microwave-polyol controlled synthesis and magnetic properties of monodisperse CoxNi1â^'xFe2O4/MWCNT nanocomposites. Materials Research Bulletin, 2013, 48, 4785-4790.	2.7	5
132	Zn–ZnO@TiO2 nanocomposite: a direct electrode for nonenzymatic biosensors. Journal of Materials Science, 2018, 53, 7138-7149.	1.7	5
133	Study on porous Cuâ€based enzymeâ€free glucose electrochemical sensor with different entrapping agents. Micro and Nano Letters, 2013, 8, 395-399.	0.6	5
134	Gâ€Quadruplexâ€Linked Supersandwich DNA Structure for Electrochemical Amplified Detection of Thrombin. Electroanalysis, 2013, 25, 1960-1966.	1.5	4
135	Copper oxide nanofilm on 3D copper foam as a novel electrode material for supercapacitors. Applied Physics A: Materials Science and Processing, 2015, 119, 1451-1457.	1.1	4
136	Effective Hydrazine Electrochemical Sensors Based on Porous CuO Nanobelts Supported on Cu Substrate. Chemistry Letters, 2015, 44, 642-644.	0.7	4
137	Target regulated photo induced electron transfer of DNA-Cu nanoparticles and their application for the detection of the hepatitis B gene. Analytical Methods, 2018, 10, 2614-2622.	1.3	4
138	Synthesis and sensing integration: A novel enzymatic reaction modulated Nanoclusters Beacon (NCB) "lllumination―strategy for label-free biosensing and logic gate operation. Biosensors and Bioelectronics, 2016, 86, 588-594.	5.3	3
139	Study on the electrochemical oxidation of glucose on different Cu–Cu2S integrated electrodes. Analytical Methods, 2013, 5, 4476.	1.3	2