List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8581902/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytotoxicity of Carbon Nanomaterials:Â Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene. Environmental Science & Technology, 2005, 39, 1378-1383.	4.6	1,307
2	A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology, 2018, 36, 258-264.	9.4	1,066
3	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
4	Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small, 2011, 7, 1322-1337.	5.2	975
5	Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters, 2007, 168, 176-185.	0.4	973
6	Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16968-16973.	3.3	839
7	High-Throughput Synthesis of Single-Layer MoS ₂ Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy. ACS Nano, 2014, 8, 6922-6933.	7.3	813
8	Functionalized Nano-MoS ₂ with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. ACS Nano, 2016, 10, 11000-11011.	7.3	812
9	Mn ²⁺ Dopantâ€Controlled Synthesis of NaYF ₄ :Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery. Advanced Materials, 2012, 24, 1226-1231.	11.1	758
10	Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate. Accounts of Chemical Research, 2013, 46, 622-631.	7.6	627
11	Understanding the Toxicity of Carbon Nanotubes. Accounts of Chemical Research, 2013, 46, 702-713.	7.6	623
12	Near Infrared Laser-Induced Targeted Cancer Therapy Using Thermoresponsive Polymer Encapsulated Gold Nanorods. Journal of the American Chemical Society, 2014, 136, 7317-7326.	6.6	569
13	Bismuth Sulfide Nanorods as a Precision Nanomedicine for <i>in Vivo</i> Multimodal Imaging-Guided Photothermal Therapy of Tumor. ACS Nano, 2015, 9, 696-707.	7.3	503
14	Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chemical Society Reviews, 2012, 41, 97-114.	18.7	487
15	Recent Advances in Design and Fabrication of Upconversion Nanoparticles and Their Safe Theranostic Applications. Advanced Materials, 2013, 25, 3758-3779.	11.1	437
16	Metabolism of Nanomaterials <i>in Vivo</i> : Blood Circulation and Organ Clearance. Accounts of Chemical Research, 2013, 46, 761-769.	7.6	424
17	Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenchingâ€Shield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd ³⁺ â€Sensitized Nanoparticles. Advanced Materials, 2014, 26, 2831-2837.	11.1	405
18	The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials, 2009, 30, 611-621.	5.7	388

#	Article	IF	CITATIONS
19	Tungsten Sulfide Quantum Dots as Multifunctional Nanotheranostics for <i>In Vivo</i> Dual-Modal Image-Guided Photothermal/Radiotherapy Synergistic Therapy. ACS Nano, 2015, 9, 12451-12463.	7.3	388
20	Biodistribution of Carbon Single-Wall Carbon Nanotubes in Mice. Journal of Nanoscience and Nanotechnology, 2004, 4, 1019-1024.	0.9	355
21	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	4.2	336
22	Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicology Letters, 2008, 183, 72-80.	0.4	310
23	WS ₂ nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale, 2014, 6, 10394-10403.	2.8	301
24	Multihydroxylated [Gd@C82(OH)22]nNanoparticles:Â Antineoplastic Activity of High Efficiency and Low Toxicity. Nano Letters, 2005, 5, 2050-2057.	4.5	281
25	Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale, 2011, 3, 362-382.	2.8	264
26	Functionalized MoS ₂ Nanovehicle with Nearâ€Infrared Laserâ€Mediated Nitric Oxide Release and Photothermal Activities for Advanced Bacteriaâ€Infected Wound Therapy. Small, 2018, 14, e1802290.	5.2	259
27	Controlling Assembly of Paired Gold Clusters within Apoferritin Nanoreactor for in Vivo Kidney Targeting and Biomedical Imaging. Journal of the American Chemical Society, 2011, 133, 8617-8624.	6.6	258
28	Synthesis of BSA oated BiOI@Bi ₂ S ₃ Semiconductor Heterojunction Nanoparticles and Their Applications for Radio/Photodynamic/Photothermal Synergistic Therapy of Tumor. Advanced Materials, 2017, 29, 1704136.	11.1	257
29	Use of Synchrotron Radiation-Analytical Techniques To Reveal Chemical Origin of Silver-Nanoparticle Cytotoxicity. ACS Nano, 2015, 9, 6532-6547.	7.3	246
30	Emerging Strategies of Nanomaterialâ€Mediated Tumor Radiosensitization. Advanced Materials, 2019, 31, e1802244.	11.1	244
31	Recent Advances in Upconversion Nanoparticlesâ€Based Multifunctional Nanocomposites for Combined Cancer Therapy. Advanced Materials, 2015, 27, 7692-7712.	11.1	243
32	Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner. ACS Applied Materials & Interfaces, 2015, 7, 20568-20575.	4.0	243
33	Revealing the Binding Structure of the Protein Corona on Gold Nanorods Using Synchrotron Radiation-Based Techniques: Understanding the Reduced Damage in Cell Membranes. Journal of the American Chemical Society, 2013, 135, 17359-17368.	6.6	239
34	Chemistry of carbon nanotubes in biomedical applications. Journal of Materials Chemistry, 2010, 20, 1036-1052.	6.7	235
35	Smart MoS ₂ /Fe ₃ O ₄ Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging. Theranostics, 2015, 5, 931-945.	4.6	234
36	Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7449-7454.	3.3	233

#	Article	IF	CITATIONS
37	Grapheneâ€Based Smart Platforms for Combined Cancer Therapy. Advanced Materials, 2019, 31, e1800662.	11.1	233
38	Full Assessment of Fate and Physiological Behavior of Quantum Dots Utilizing <i>Caenorhabditis elegans</i> as a Model Organism. Nano Letters, 2011, 11, 3174-3183.	4.5	212
39	Chirality of Glutathione Surface Coating Affects the Cytotoxicity of Quantum Dots. Angewandte Chemie - International Edition, 2011, 50, 5860-5864.	7.2	210
40	Characterization and Preliminary Toxicity Assay of Nanoâ€ītanium Dioxide Additive in Sugar oated Chewing Gum. Small, 2013, 9, 1765-1774.	5.2	209
41	Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C ₈₂ (OH) ₂₂ and its implication for de novo design of nanomedicine. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15431-15436.	3.3	200
42	Controllable Generation of Nitric Oxide by Nearâ€Infraredâ€Sensitized Upconversion Nanoparticles for Tumor Therapy. Advanced Functional Materials, 2015, 25, 3049-3056.	7.8	194
43	The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity. Biomaterials, 2009, 30, 3934-3945.	5.7	177
44	Interfacing Engineered Nanoparticles with Biological Systems: Anticipating Adverse Nano–Bio Interactions. Small, 2013, 9, 1573-1584.	5.2	176
45	Proteinâ€Nanoreactorâ€Assisted Synthesis of Semiconductor Nanocrystals for Efficient Cancer Theranostics. Advanced Materials, 2016, 28, 5923-5930.	11.1	175
46	Redâ€Emitting Upconverting Nanoparticles for Photodynamic Therapy in Cancer Cells Under Nearâ€Infrared Excitation. Small, 2013, 9, 1929-1938.	5.2	174
47	TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials, 2015, 40, 107-116.	5.7	172
48	One-pot synthesis of PEGylated plasmonic MoO3–x hollow nanospheres for photoacoustic imaging guided chemo-photothermal combinational therapy of cancer. Biomaterials, 2016, 76, 11-24.	5.7	171
49	Poly(Vinylpyrollidone)―and Selenocysteineâ€Modified Bi ₂ Se ₃ Nanoparticles Enhance Radiotherapy Efficacy in Tumors and Promote Radioprotection in Normal Tissues. Advanced Materials, 2017, 29, 1701268.	11.1	171
50	Facile Fabrication of Rare-Earth-Doped Gd ₂ O ₃ Hollow Spheres with Upconversion Luminescence, Magnetic Resonance, and Drug Delivery Properties. Journal of Physical Chemistry C, 2011, 115, 23790-23796.	1.5	170
51	Efficient Near Infrared Light Triggered Nitric Oxide Release Nanocomposites for Sensitizing Mild Photothermal Therapy. Advanced Science, 2019, 6, 1801122.	5.6	169
52	Polyoxometalate-Based Radiosensitization Platform for Treating Hypoxic Tumors by Attenuating Radioresistance and Enhancing Radiation Response. ACS Nano, 2017, 11, 7164-7176.	7.3	168
53	Enhanced Red Emission from GdF ₃ :Yb ³⁺ ,Er ³⁺ Upconversion Nanocrystals by Li ⁺ Doping and Their Application for Bioimaging. Chemistry - A European Journal, 2012, 18, 9239-9245.	1.7	166
54	Size-tunable synthesis of lanthanide-doped Gd ₂ O ₃ nanoparticles and their applications for optical and magnetic resonance imaging. Journal of Materials Chemistry, 2012, 22, 966-974.	6.7	165

#	Article	IF	CITATIONS
55	Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nature Communications, 2015, 6, 5988.	5.8	164
56	Comparative toxicity of nanoparticulate/bulk Yb ₂ O ₃ and YbCl ₃ to cucumber (<i>Cucumis sativus</i>). Environmental Science & Technology, 2012, 46, 1834-1841.	4.6	153
57	Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancerâ€Associated Fibroblast Activation. Angewandte Chemie - International Edition, 2016, 55, 1050-1055.	7.2	153
58	Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochemical Pharmacology, 2006, 71, 872-881.	2.0	152
59	Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics, 2020, 10, 757-781.	4.6	152
60	Reactive Oxygen Speciesâ€Regulating Strategies Based on Nanomaterials for Disease Treatment. Advanced Science, 2021, 8, 2002797.	5.6	149
61	Potent Angiogenesis Inhibition by the Particulate Form of Fullerene Derivatives. ACS Nano, 2010, 4, 2773-2783.	7.3	148
62	Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicology and Applied Pharmacology, 2008, 230, 364-371.	1.3	145
63	Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Acta Biomaterialia, 2015, 17, 201-209.	4.1	145
64	Parallel Comparative Studies on Mouse Toxicity of Oxide Nanoparticle- and Gadolinium-Based T1 MRI Contrast Agents. ACS Nano, 2015, 9, 12425-12435.	7.3	145
65	Biodegradable MoO _x nanoparticles with efficient near-infrared photothermal and photodynamic synergetic cancer therapy at the second biological window. Nanoscale, 2018, 10, 1517-1531.	2.8	144
66	Tumor Microenvironment-Responsive Cu ₂ (OH)PO ₄ Nanocrystals for Selective and Controllable Radiosentization via the X-ray-Triggered Fenton-like Reaction. Nano Letters, 2019, 19, 1749-1757.	4.5	142
67	An overview of the use of nanozymes in antibacterial applications. Chemical Engineering Journal, 2021, 418, 129431.	6.6	140
68	Influences of Structural Properties on Stability of Fullerenols. Journal of Physical Chemistry B, 2004, 108, 11473-11479.	1.2	139
69	Gdâ€Hybridized Plasmonic Auâ€Nanocomposites Enhanced Tumorâ€Interior Drug Permeability in Multimodal Imagingâ€Guided Therapy. Advanced Materials, 2016, 28, 8950-8958.	11.1	138
70	Xâ€Rayâ€Controlled Generation of Peroxynitrite Based on Nanosized LiLuF ₄ :Ce ³⁺ Scintillators and their Applications for Radiosensitization. Advanced Materials, 2018, 30, e1804046.	11.1	138
71	Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology, 2010, 21, 285103.	1.3	137
72	Intelligent MoS ₂ Nanotheranostic for Targeted and Enzyme-/pH-/NIR-Responsive Drug Delivery To Overcome Cancer Chemotherapy Resistance Guided by PET Imaging. ACS Applied Materials & Interfaces, 2018, 10, 4271-4284.	4.0	137

#	Article	IF	CITATIONS
73	Towards understanding of nanoparticle–protein corona. Archives of Toxicology, 2015, 89, 519-539.	1.9	135
74	Photothermal Effect Enhanced Cascade-Targeting Strategy for Improved Pancreatic Cancer Therapy by Gold Nanoshell@Mesoporous Silica Nanorod. ACS Nano, 2017, 11, 8103-8113.	7.3	135
75	Progress, challenges, and future of nanomedicine. Nano Today, 2020, 35, 101008.	6.2	135
76	Interactions Between Proteins and Carbonâ€Based Nanoparticles: Exploring the Origin of Nanotoxicity at the Molecular Level. Small, 2013, 9, 1546-1556.	5.2	132
77	Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement. Biomaterials, 2019, 189, 11-22.	5.7	132
78	[Gd@C ₈₂ (OH) ₂₂] _{<i>n</i>} Nanoparticles Induce Dendritic Cell Maturation and Activate Th1 Immune Responses. ACS Nano, 2010, 4, 1178-1186.	7.3	131
79	Novel Insights into Combating Cancer Chemotherapy Resistance Using a Plasmonic Nanocarrier: Enhancing Drug Sensitiveness and Accumulation Simultaneously with Localized Mild Photothermal Stimulus of Femtosecond Pulsed Laser. Advanced Functional Materials, 2014, 24, 4229-4239.	7.8	130
80	Graphdiyne Nanosheet-Based Drug Delivery Platform for Photothermal/Chemotherapy Combination Treatment of Cancer. ACS Applied Materials & Interfaces, 2018, 10, 8436-8442.	4.0	130
81	Peroxidase-like activity of MoS ₂ nanoflakes with different modifications and their application for H ₂ O ₂ and glucose detection. Journal of Materials Chemistry B, 2018, 6, 487-498.	2.9	130
82	Enhanced Generation of Non-Oxygen Dependent Free Radicals by Schottky-type Heterostructures of Au–Bi ₂ S ₃ Nanoparticles <i>via</i> X-ray-Induced Catalytic Reaction for Radiosensitization. ACS Nano, 2019, 13, 5947-5958.	7.3	126
83	Chiral Surface of Nanoparticles Determines the Orientation of Adsorbed Transferrin and Its Interaction with Receptors. ACS Nano, 2017, 11, 4606-4616.	7.3	125
84	Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging. Journal of Materials Chemistry, 2012, 22, 6974.	6.7	124
85	Progress and Prospects of Graphdiyneâ€Based Materials in Biomedical Applications. Advanced Materials, 2019, 31, e1804386.	11.1	124
86	Multiwall Carbon Nanotubes Mediate Macrophage Activation and Promote Pulmonary Fibrosis Through TGFâ€Î²/Smad Signaling Pathway. Small, 2013, 9, 3799-3811.	5.2	121
87	Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials, 2015, 61, 307-315.	5.7	121
88	Nanomedicineâ€Based Immunotherapy for the Treatment of Cancer Metastasis. Advanced Materials, 2019, 31, e1904156.	11.1	120
89	Inhibition of Tumor Growth by Endohedral Metallofullerenol Nanoparticles Optimized as Reactive Oxygen Species Scavenger. Molecular Pharmacology, 2008, 74, 1132-1140.	1.0	117
90	Graphdiyne Nanoparticles with High Free Radical Scavenging Activity for Radiation Protection. ACS Applied Materials & amp; Interfaces, 2019, 11, 2579-2590.	4.0	115

#	Article	IF	CITATIONS
91	Lanthanide ion-doped GdPO4 nanorods with dual-modal bio-optical and magnetic resonance imaging properties. Nanoscale, 2012, 4, 3754.	2.8	113
92	A magnetic graphene hybrid functionalized with beta-cyclodextrins for fast and efficient removal of organic dyes. Journal of Materials Chemistry A, 2014, 2, 12296.	5.2	113
93	Two-dimensional transition metal dichalcogenide nanomaterials for combination cancer therapy. Journal of Materials Chemistry B, 2017, 5, 1873-1895.	2.9	112
94	Strategies based on metal-based nanoparticles for hypoxic-tumor radiotherapy. Chemical Science, 2019, 10, 6932-6943.	3.7	111
95	A Safeâ€byâ€Design Strategy towards Safer Nanomaterials in Nanomedicines. Advanced Materials, 2019, 31, e1805391.	11.1	109
96	Ultrasmall [⁶⁴ Cu]Cu Nanoclusters for Targeting Orthotopic Lung Tumors Using Accurate Positron Emission Tomography Imaging. ACS Nano, 2015, 9, 4976-4986.	7.3	108
97	Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy. Scientific Reports, 2012, 2, 847.	1.6	104
98	Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology. Chemical Society Reviews, 2013, 42, 8266.	18.7	104
99	A Heterojunction Structured WO _{2.9} -WSe ₂ Nanoradiosensitizer Increases Local Tumor Ablation and Checkpoint Blockade Immunotherapy upon Low Radiation Dose. ACS Nano, 2020, 14, 5400-5416.	7.3	104
100	Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 136-146.	1.7	101
101	Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells. Toxicology Letters, 2015, 237, 61-71.	0.4	100
102	Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: a catalytic model bridging computations and experiments for nanozymes. Nanoscale, 2019, 11, 13289-13299.	2.8	100
103	Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Biomaterials, 2014, 35, 9833-9843.	5.7	99
104	TWEEN coated NaYF4:Yb,Er/NaYF4 core/shell upconversion nanoparticles for bioimaging and drug delivery. RSC Advances, 2012, 2, 7037.	1.7	98
105	Polyhydroxylated Metallofullerenols Stimulate ILâ€1β Secretion of Macrophage through TLRs/MyD88/NFâ€ՔB Pathway and NLRP ₃ Inflammasome Activation. Small, 2014, 10, 2362-2372.	5.2	96
106	Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo. Science Bulletin, 2015, 60, 3-20.	4.3	96
107	Stimuli-Responsive Small-on-Large Nanoradiosensitizer for Enhanced Tumor Penetration and Radiotherapy Sensitization. ACS Nano, 2020, 14, 10001-10017.	7.3	93
108	The use of polyethylenimine-modified graphene oxide as a nanocarrier for transferring hydrophobic nanocrystals into water to produce water-dispersible hybrids for use in drug delivery. Carbon, 2013, 57, 120-129.	5.4	92

#	Article	IF	CITATIONS
109	Multifunctional Rb <i>_x</i> WO ₃ Nanorods for Simultaneous Combined Chemoâ€photothermal Therapy and Photoacoustic/CT Imaging. Small, 2014, 10, 4160-4170.	5.2	86
110	Design, Synthesis, and Surface Modification of Materials Based on Transitionâ€Metal Dichalcogenides for Biomedical Applications. Small Methods, 2017, 1, 1700220.	4.6	86
111	A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells. Nanoscale, 2013, 5, 11910.	2.8	85
112	Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Analytical Chemistry, 2018, 90, 589-614.	3.2	85
113	Plasmonic AuPt@CuS Heterostructure with Enhanced Synergistic Efficacy for Radiophotothermal Therapy. Journal of the American Chemical Society, 2021, 143, 16113-16127.	6.6	85
114	Nanoparticle Ligand Exchange and Its Effects at the Nanoparticle–Cell Membrane Interface. Nano Letters, 2019, 19, 8-18.	4.5	84
115	Chemical Mechanisms of the Toxicological Properties of Nanomaterials: Generation of Intracellular Reactive Oxygen Species. Chemistry - an Asian Journal, 2013, 8, 2342-2353.	1.7	79
116	Emerging Delivery Strategies of Carbon Monoxide for Therapeutic Applications: from CO Gas to CO Releasing Nanomaterials. Small, 2019, 15, e1904382.	5.2	79
117	A pH-responsive ultrathin Cu-based nanoplatform for specific photothermal and chemodynamic synergistic therapy. Chemical Science, 2021, 12, 2594-2603.	3.7	78
118	Biological characterizations of [Gd@C82(OH)22] <i>n</i> nanoparticles as fullerene derivatives for cancer therapy. Integrative Biology (United Kingdom), 2013, 5, 43-47.	0.6	76
119	Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. Journal of Analytical Atomic Spectrometry, 2008, 23, 1121.	1.6	75
120	Gadolinium polytungstate nanoclusters: a new theranostic with ultrasmall size and versatile properties for dual-modal MR/CT imaging and photothermal therapy/radiotherapy of cancer. NPG Asia Materials, 2016, 8, e273-e273.	3.8	75
121	Therapeutic Nanoparticles Based on Curcumin and Bamboo Charcoal Nanoparticles for Chemo-Photothermal Synergistic Treatment of Cancer and Radioprotection of Normal Cells. ACS Applied Materials & Interfaces, 2017, 9, 14281-14291.	4.0	72
122	The polyvinylpyrrolidone functionalized rGO/Bi ₂ S ₃ nanocomposite as a near-infrared light-responsive nanovehicle for chemo-photothermal therapy of cancer. Nanoscale, 2016, 8, 11531-11542.	2.8	71
123	Design of TPGS-functionalized Cu ₃ BiS ₃ nanocrystals with strong absorption in the second near-infrared window for radiation therapy enhancement. Nanoscale, 2017, 9, 8229-8239.	2.8	69
124	Elemental Bismuth–Graphene Heterostructures for Photocatalysis from Ultraviolet to Infrared Light. ACS Catalysis, 2017, 7, 7043-7050.	5.5	65
125	Gd–Metallofullerenol Nanomaterial Suppresses Pancreatic Cancer Metastasis by Inhibiting the Interaction of Histone Deacetylase 1 and Metastasis-Associated Protein 1. ACS Nano, 2015, 9, 6826-6836.	7.3	64
126	BiO _{2–<i>x</i>} Nanosheets as Radiosensitizers with Catalase-Like Activity for Hypoxia Alleviation and Enhancement of the Radiotherapy of Tumors. Inorganic Chemistry, 2020, 59, 3482-3493.	1.9	64

#	Article	IF	CITATIONS
127	Ultrasmall BiOI Quantum Dots with Efficient Renal Clearance for Enhanced Radiotherapy of Cancer. Advanced Science, 2020, 7, 1902561.	5.6	63
128	Toxicity of manufactured nanomaterials. Particuology, 2022, 69, 31-48.	2.0	63
129	Evaluation of the toxicity of graphene oxide exposure to the eye. Nanotoxicology, 2016, 10, 1329-1340.	1.6	62
130	Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nature Communications, 2021, 12, 6866.	5.8	62
131	Biodistribution, excretion, and toxicity of polyethyleneimine modified NaYF ₄ :Yb,Er upconversion nanoparticles in mice via different administration routes. Nanoscale, 2017, 9, 4497-4507.	2.8	61
132	Ultrasmall Superparamagnetic Iron Oxide Nanoparticle for <i>T</i> ₂ -Weighted Magnetic Resonance Imaging. ACS Applied Materials & Interfaces, 2017, 9, 28959-28966.	4.0	61
133	Silica-coated bismuth sulfide nanorods as multimodal contrast agents for a non-invasive visualization of the gastrointestinal tract. Nanoscale, 2015, 7, 12581-12591.	2.8	60
134	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	7.3	60
135	Nano-bio interactions: the implication of size-dependent biological effects of nanomaterials. Science China Life Sciences, 2020, 63, 1168-1182.	2.3	58
136	Graphdiyne nanoradioprotector with efficient free radical scavenging ability for mitigating radiation-induced gastrointestinal tract damage. Biomaterials, 2020, 244, 119940.	5.7	58
137	Biocompatible and flexible graphene oxide/upconversion nanoparticle hybrid film for optical pH sensing. Physical Chemistry Chemical Physics, 2014, 16, 1576-1582.	1.3	57
138	Glucose-responsive cascaded nanocatalytic reactor with self-modulation of the tumor microenvironment for enhanced chemo-catalytic therapy. Materials Horizons, 2020, 7, 1834-1844.	6.4	56
139	MoS ₂ -Nanosheet-Assisted Coordination of Metal Ions with Porphyrin for Rapid Detection and Removal of Cadmium Ions in Aqueous Media. ACS Applied Materials & Interfaces, 2017, 9, 21362-21370.	4.0	54
140	Short Multiwall Carbon Nanotubes Promote Neuronal Differentiation of PC12 Cells via Upâ€Regulation of the Neurotrophin Signaling Pathway. Small, 2013, 9, 1786-1798.	5.2	52
141	Application of Multifunctional Nanomaterials in Radioprotection of Healthy Tissues. Advanced Healthcare Materials, 2018, 7, e1800421.	3.9	52
142	Clinically Approved Carbon Nanoparticles with Oral Administration for Intestinal Radioprotection via Protecting the Small Intestinal Crypt Stem Cells and Maintaining the Balance of Intestinal Flora. Small, 2020, 16, e1906915.	5.2	51
143	Highly Stable Silica-Coated Bismuth Nanoparticles Deliver Tumor Microenvironment-Responsive Prodrugs to Enhance Tumor-Specific Photoradiotherapy. Journal of the American Chemical Society, 2021, 143, 11449-11461.	6.6	51
144	Phytotoxicity, Translocation, and Biotransformation of NaYF ₄ Upconversion Nanoparticles in a Soybean Plant. Small, 2015, 11, 4774-4784.	5.2	49

#	Article	IF	CITATIONS
145	The age of bioinspired molybdenumâ€involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications. View, 2021, 2, 20200188.	2.7	49
146	Translocation, biotransformation-related degradation, and toxicity assessment of polyvinylpyrrolidone-modified 2H-phase nano-MoS ₂ . Nanoscale, 2019, 11, 4767-4780.	2.8	47
147	Regioselectivity control of graphene functionalization by ripples. Physical Chemistry Chemical Physics, 2011, 13, 19449.	1.3	46
148	Biosafety assessment of Gd@C82(OH)22 nanoparticles on Caenorhabditis elegans. Nanoscale, 2011, 3, 2636.	2.8	46
149	Toxicological Evaluation of Graphene-Family Nanomaterials. Journal of Nanoscience and Nanotechnology, 2020, 20, 1993-2006.	0.9	46
150	Ecotoxicological assessment of lanthanum with Caenorhabditis elegans in liquid medium. Metallomics, 2010, 2, 806.	1.0	42
151	Suppressing the Radiation-Induced Corrosion of Bismuth Nanoparticles for Enhanced Synergistic Cancer Radiophototherapy. ACS Nano, 2020, 14, 13016-13029.	7.3	42
152	Aspect ratios of gold nanoshell capsules mediated melanoma ablation by synergistic photothermal therapy and chemotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 439-448.	1.7	41
153	Hydrotalcite monolayer toward high performance synergistic dual-modal imaging and cancer therapy. Biomaterials, 2018, 165, 14-24.	5.7	39
154	Tuning Electronic Properties of Metallic Atom in Bondage to a Nanospace. Journal of Physical Chemistry B, 2005, 109, 8779-8785.	1.2	38
155	A Photosensitizer Discretely Loaded Nanoaggregate with Robust Photodynamic Effect for Local Treatment Triggers Systemic Antitumor Responses. ACS Nano, 2022, 16, 3070-3080.	7.3	38
156	Hyaluronic acid modified MPEG- <i>b</i> -PAE block copolymer aqueous micelles for efficient ophthalmic drug delivery of hydrophobic genistein. Drug Delivery, 2018, 25, 1258-1265.	2.5	37
157	15 Years of <i>Small</i> : Research Trends in Nanosafety. Small, 2020, 16, e2000980.	5.2	37
158	Design of multifunctional alkali ion doped CaF2 upconversion nanoparticles for simultaneous bioimaging and therapy. Dalton Transactions, 2014, 43, 3861.	1.6	36
159	A simple and efficient synthetic route for preparation of NaYF ₄ upconversion nanoparticles by thermo-decomposition of rare-earth oleates. CrystEngComm, 2014, 16, 5650-5661.	1.3	35
160	Layered double hydroxide nanosheets: towards ultrasensitive tumor microenvironment responsive synergistic therapy. Journal of Materials Chemistry B, 2020, 8, 1445-1455.	2.9	35
161	Mesoporous Bamboo Charcoal Nanoparticles as a New Nearâ€Infrared Responsive Drug Carrier for Imagingâ€Guided Chemotherapy/Photothermal Synergistic Therapy of Tumor. Advanced Healthcare Materials, 2016, 5, 1627-1637	3.9	34
162	X-ray-facilitated redox cycling of nanozyme possessing peroxidase-mimicking activity for reactive oxygen species-enhanced cancer therapy. Biomaterials, 2021, 276, 121023.	5.7	34

#	Article	IF	CITATIONS
163	Harnessing Tumor Microenvironment for Nanoparticleâ€Mediated Radiotherapy. Advanced Therapeutics, 2018, 1, 1800050.	1.6	33
164	Co-delivery of doxorubicin and quercetin via mPEG–PLGA copolymer assembly for synergistic anti-tumor efficacy and reducing cardio-toxicity. Science Bulletin, 2016, 61, 1689-1698.	4.3	32
165	Epigenetic modulation of human breast cancer by metallofullerenol nanoparticles: in vivo treatment and in vitro analysis. Nanoscale, 2011, 3, 4713.	2.8	30
166	Au Nanoclusters and Photosensitizer Dual Loaded Spatiotemporal Controllable Liposomal Nanocomposites Enhance Tumor Photodynamic Therapy Effect by Inhibiting Thioredoxin Reductase. Advanced Healthcare Materials, 2017, 6, 1601453.	3.9	30
167	Synchrotron radiation techniques for nanotoxicology. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1531-1549.	1.7	29
168	Recent advances of stimuli-responsive systems based on transition metal dichalcogenides for smart cancer therapy. Journal of Materials Chemistry B, 2019, 7, 2588-2607.	2.9	29
169	Generalized Preparation of Two-Dimensional Quasi-nanosheets via Self-assembly of Nanoparticles. Journal of the American Chemical Society, 2019, 141, 1725-1734.	6.6	29
170	Study of rare earth encapsulated carbon nanomolecules for biomedical uses. Journal of Alloys and Compounds, 2006, 408-412, 400-404.	2.8	28
171	Investigating oxidation state-induced toxicity of PECylated graphene oxide in ocular tissue using gene expression profiles. Nanotoxicology, 2018, 12, 819-835.	1.6	28
172	Modulation of Structural and Electronic Properties of Fullerene and Metallofullerenes by Surface Chemical Modifications. Journal of Nanoscience and Nanotechnology, 2007, 7, 1085-1101.	0.9	26
173	On-demand generation of singlet oxygen from a smart graphene complex for the photodynamic treatment of cancer cells. Biomaterials Science, 2014, 2, 1412-1418.	2.6	26
174	Molecular mechanism of Gd@C 82 (OH) 22 increasing collagen expression: Implication for encaging tumor. Biomaterials, 2018, 152, 24-36.	5.7	26
175	Fractionated regimen-suitable immunoradiotherapy sensitizer based on ultrasmall Fe4Se2W18 nanoclusters enable tumor-specific radiosensitization augment and antitumor immunity boost. Nano Today, 2021, 36, 101003.	6.2	26
176	Rational Design of Nanomaterials for Various Radiationâ€induced Diseases Prevention and Treatment. Advanced Healthcare Materials, 2021, 10, e2001615.	3.9	26
177	Ytterbium and trace element distribution in brain and organic tissues of offspring rats after prenatal and postnatal exposure to ytterbium. Biological Trace Element Research, 2007, 117, 89-104.	1.9	25
178	Research trends in biomedical applications of two-dimensional nanomaterials over the last decade – A bibliometric analysis. Advanced Drug Delivery Reviews, 2022, 188, 114420.	6.6	25
179	Enhanced radiosensitization of ternary Cu ₃ BiSe ₃ nanoparticles by photo-induced hyperthermia in the second near-infrared biological window. Nanoscale, 2019, 11, 7157-7165.	2.8	23
180	Nanomedicine enables spatiotemporally regulating macrophage-based cancer immunotherapy. Biomaterials, 2021, 268, 120552.	5.7	23

#	Article	IF	CITATIONS
181	Oneâ€Pot Templateâ€Free Synthesis of NaYF ₄ Upconversion Hollow Nanospheres for Bioimaging and Drug Delivery. Chemistry - an Asian Journal, 2014, 9, 1655-1662.	1.7	22
182	Transformable Galliumâ€Based Liquid Metal Nanoparticles for Tumor Radiotherapy Sensitization. Advanced Healthcare Materials, 2022, 11, e2102584.	3.9	19
183	Quantifying the distribution of ceria nanoparticles in cucumber roots: the influence of labeling. RSC Advances, 2015, 5, 4554-4560.	1.7	18
184	Cu ₂ (OH)PO ₄ /reduced graphene oxide nanocomposites for enhanced photocatalytic degradation of 2,4-dichlorophenol under infrared light irradiation. RSC Advances, 2018, 8, 3611-3618.	1.7	18
185	Nitric oxide-generating <scp>l</scp> -cysteine-grafted graphene film as a blood-contacting biomaterial. Biomaterials Science, 2016, 4, 938-942.	2.6	17
186	Functional tumor imaging based on inorganic nanomaterials. Science China Chemistry, 2017, 60, 1425-1438.	4.2	17
187	A bibliometric analysis: Research progress and prospects on transition metal dichalcogenides in the biomedical field. Chinese Chemical Letters, 2021, 32, 3762-3770.	4.8	17
188	The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy. Nanoscale, 2019, 11, 14528-14539.	2.8	16
189	Combinational application of metal–organic frameworksâ€based nanozyme and nucleic acid delivery in cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1773.	3.3	16
190	A Copper Peroxide Fenton Nanoagent-Hydrogel as an <i>In Situ</i> pH-Responsive Wound Dressing for Effectively Trapping and Eliminating Bacteria. ACS Applied Bio Materials, 2022, 5, 1779-1793.	2.3	16
191	Controllable synthesis of Gd2O(CO3)2·H2O@silica–FITC nanoparticles with size-dependent optical and magnetic resonance imaging properties. New Journal of Chemistry, 2012, 36, 2599.	1.4	15
192	Temporal Techniques: Dynamic Tracking of Nanomaterials in Live Cells. Small, 2013, 9, 1585-1594.	5.2	15
193	Enhanced Multifunctional Properties of Graphene Nanocomposites with Nacreâ€Like Structures. Advanced Engineering Materials, 2015, 17, 523-531.	1.6	15
194	Protein-directed synthesis of Bi ₂ S ₃ nanoparticles as an efficient contrast agent for visualizing the gastrointestinal tract. RSC Advances, 2017, 7, 17505-17513.	1.7	15
195	Fabrication of CuNCs/LDHs Films with Excellent Luminescent Properties and Exploration of Thermosensitivity. Industrial & amp; Engineering Chemistry Research, 2019, 58, 8009-8015.	1.8	14
196	3D halos assembled from Fe ₃ O ₄ /Au NPs with enhanced catalytic and optical properties. Nanoscale, 2019, 11, 20968-20976.	2.8	14
197	Photoluminescence enhancement of silver nanoclusters assembled on the layered double hydroxides and their application to guanine detection. Talanta, 2019, 193, 161-167.	2.9	14
198	Regulation on mechanical properties of collagen: Enhanced bioactivities of metallofullerol. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 783-793.	1.7	12

#	Article	IF	CITATIONS
199	Gd@C82(OH)22 harnesses inflammatory regeneration for osteogenesis of mesenchymal stem cells through JNK/STAT3 signaling pathway. Journal of Materials Chemistry B, 2018, 6, 5802-5811.	2.9	12
200	PEG-GO@XN nanocomposite suppresses breast cancer metastasis via inhibition of mitochondrial oxidative phosphorylation and blockade of epithelial-to-mesenchymal transition. European Journal of Pharmacology, 2021, 895, 173866.	1.7	11
201	Precision design of engineered nanomaterials to guide immune systems for disease treatment. Matter, 2022, 5, 1162-1191.	5.0	11
202	Filling Knowledge Gaps that Distinguish the Safety Profiles of Nano versus Bulk Materials. Small, 2013, 9, 1426-1427.	5.2	10
203	Study of multihydroxylated processes of Gd@C82 by ICP-MASS. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 537-540.	0.7	9
204	Free-Floating 2D Nanosheets with a Superlattice Assembled from Fe3O4 Nanoparticles for Peroxidase-Mimicking Activity. ACS Applied Nano Materials, 2018, 1, 5389-5395.	2.4	9
205	A Bi ₂ S ₃ @mSiO ₂ @Ag nanocomposite for enhanced CT visualization and antibacterial response in the gastrointestinal tract. Journal of Materials Chemistry B, 2020, 8, 666-676.	2.9	9
206	Upconversion: Redâ€Emitting Upconverting Nanoparticles for Photodynamic Therapy in Cancer Cells Under Nearâ€Infrared Excitation (Small 11/2013). Small, 2013, 9, 1928-1928.	5.2	8
207	Metallofullerenol Inhibits Cellular Iron Uptake by Inducing Transferrin Tetramerization. Chemistry - an Asian Journal, 2017, 12, 2646-2651.	1.7	8
208	A Novel Drug Design Strategy: An Inspiration from Encaging Tumor by Metallofullerenol Gd@C82(OH)22. Molecules, 2019, 24, 2387.	1.7	8
209	<l>ln Vivo</l> Toxicity Evaluation of Graphene Oxide in <l>Drosophila Melanogaster</l> After Oral Administration. Journal of Nanoscience and Nanotechnology, 2016, 16, 7472-7478.	0.9	5
210	Fabrication of dual-stimuli responsive films assembled by flavin mononucleotide and layered double hydroxides. Chemical Communications, 2018, 54, 12590-12593.	2.2	5
211	Orally administered Bi2S3@SiO2 core-shell nanomaterials as gastrointestinal contrast agents and their influence on gut microbiota. Materials Today Bio, 2022, 13, 100178.	2.6	5
212	Clinical Nanomaterials: A Safeâ€byâ€Design Strategy towards Safer Nanomaterials in Nanomedicines (Adv.) Tj ET	QqQ 0 0 r	gBJ /Overlocl
213	Photothermal Killing of A549 Cells and Autophagy Induction by Bismuth Selenide Particles. Materials, 2021, 14, 3373.	1.3	2
214	The effect of fullerenols on streptozotocin-induced diabetic rats. Fullerenes Nanotubes and Carbon Nanostructures, 0, , 1-14.	1.0	0
215	Effects of the Surface Charge of Graphene Oxide Derivatives on Ocular Compatibility. Nanomaterials, 2022, 12, 735.	1.9	0