Aleksandra M Lewandowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8581859/publications.pdf

Version: 2024-02-01

29 papers 2,024 citations

430442 18 h-index 28 g-index

29 all docs 29 docs citations

times ranked

29

3463 citing authors

#	Article	IF	CITATIONS
1	Zooplankton Dominance Shift in Response to Climate-Driven Salinity Change: A Mesocosm Study. Frontiers in Marine Science, 2022, 9, .	1.2	6
2	The extent and variability of stormâ€induced temperature changes in lakes measured with longâ€term and highâ€frequency data. Limnology and Oceanography, 2021, 66, 1979-1992.	1.6	10
3	Reply to: Empirical pressure-response relations can benefit assessment of safe operating spaces. Nature Ecology and Evolution, 2021, 5, 1080-1081.	3.4	1
4	Functional shifts in estuarine zooplankton in response to climate variability. Ecology and Evolution, 2020, 10, 11591-11606.	0.8	14
5	Thresholds for ecological responses to global change do not emerge from empirical data. Nature Ecology and Evolution, 2020, 4, 1502-1509.	3.4	151
6	Scale dependence of temporal biodiversity change in modern and fossil marine plankton. Global Ecology and Biogeography, 2020, 29, 1008-1019.	2.7	9
7	Storm impacts on phytoplankton community dynamics in lakes. Global Change Biology, 2020, 26, 2756-2784.	4.2	144
8	Climate Change: Warming Impacts on Marine Biodiversity., 2018,, 353-373.		28
9	Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. Journal of Applied Ecology, 2018, 55, 169-184.	1.9	435
10	Phyto- and Bacterioplankton During Early Spring Conditions in the Baltic Sea and Response to Short-Term Experimental Warming. Frontiers in Marine Science, 2018, 5, .	1.2	7
11	The <i>Alliance for Freshwater Life</i> : A global call to unite efforts for freshwater biodiversity science and conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 1015-1022.	0.9	190
12	Manipulation of Non-random Species Loss in Natural Phytoplankton: Qualitative and Quantitative Evaluation of Different Approaches. Frontiers in Marine Science, 2017, 4, .	1.2	4
13	The influence of balanced and imbalanced resource supply on biodiversity–functioning relationship across ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150283.	1.8	43
14	The importance of phytoplankton trait variability in spring bloom formation. ICES Journal of Marine Science, 2015, 72, 1908-1915.	1.2	21
15	Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos, 2015, 124, 949-959.	1.2	66
16	Some like it hot: the protozooplankton-copepod link in a warming ocean. Marine Ecology - Progress Series, 2015, 519, 103-113.	0.9	17
17	Organic matter partitioning and stoichiometry in response to rising water temperature and copepod grazing. Marine Ecology - Progress Series, 2015, 522, 49-65.	0.9	6
18	Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification. Global Change Biology, 2014, 20, 713-723.	4.2	63

#	Article	IF	Citations
19	Effects of sea surface warming on marine plankton. Ecology Letters, 2014, 17, 614-623.	3.0	188
20	Think ratio! A stoichiometric view on biodiversity–ecosystem functioning research. Basic and Applied Ecology, 2014, 15, 465-474.	1.2	46
21	Temperature effects on phytoplankton diversity â€" The zooplankton link. Journal of Sea Research, 2014, 85, 359-364.	0.6	41
22	Spring phenological responses of marine and freshwater plankton to changing temperature and light conditions. Marine Biology, 2012, 159, 2491-2501.	0.7	65
23	Warming induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton and protozoan production. Marine Biology, 2012, 159, 2441-2453.	0.7	59
24	The Baltic Sea spring phytoplankton bloom in a changing climate: an experimental approach. Marine Biology, 2012, 159, 2479-2490.	0.7	55
25	Effects of rising temperature on pelagic biogeochemistry in mesocosm systems: a comparative analysis of the AQUASHIFT Kiel experiments. Marine Biology, 2012, 159, 2503-2518.	0.7	24
26	Responses of primary productivity to increased temperature and phytoplankton diversity. Journal of Sea Research, 2012, 72, 87-93.	0.6	59
27	Experimental induction of a coastal spring bloom early in the year by intermittent high-light episodes. Marine Ecology - Progress Series, 2012, 446, 61-71.	0.9	16
28	Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Global Change Biology, 2011, 17, 154-162.	4.2	139
29	Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Marine Ecology - Progress Series, 2010, 405, 101-111.	0.9	117