
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8581386/publications.pdf Version: 2024-02-01

ANNA DI FIORE

#	Article	IF	CITATIONS
1	Post-translational modifications in tumor-associated carbonic anhydrases. Amino Acids, 2022, 54, 543-558.	1.2	7
2	Interaction Studies between Carbonic Anhydrase and a Sulfonamide Inhibitor by Experimental and Theoretical Approaches. ACS Medicinal Chemistry Letters, 2022, 13, 271-277.	1.3	6
3	Biochemical and Structural Insights into the Winged Helix Domain of P150, the Largest Subunit of the Chromatin Assembly Factor 1. International Journal of Molecular Sciences, 2022, 23, 2160.	1.8	6
4	The crystal structures of 2-(4-benzhydrylpiperazin-1-yl)- <i>N</i> -(4-sulfamoylphenyl)acetamide in complex with human carbonic anhydrase II and VII provide insights into selective CA inhibitor development. New Journal of Chemistry, 2021, 45, 147-152.	1.4	2
5	Design, synthesis and biochemical evaluation of novel carbonic anhydrase inhibitors triggered by structural knowledge on hCA VII. Bioorganic and Medicinal Chemistry, 2021, 44, 116279.	1.4	2
6	Inhibition of the β-carbonic anhydrase from the protozoan pathogen <i>Trichomonas vaginalis</i> with sulphonamides. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 330-335.	2.5	4
7	Beta-Carbonic Anhydrase 1 from Trichomonas Vaginalis as New Antiprotozoan Drug Target. Topics in Medicinal Chemistry, 2021, , 1.	0.4	0
8	Inhibition of the newly discovered β‑carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with inorganic anions and small molecules. Journal of Inorganic Biochemistry, 2020, 213, 111274.	1.5	10
9	Human carbonic anhydrases and post-translational modifications: a hidden world possibly affecting protein properties and functions. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1450-1461.	2.5	19
10	Biochemical and structural characterisation of a protozoan beta-carbonic anhydrase from <i>Trichomonas vaginalis</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1292-1299.	2.5	19
11	Looking toward the Rim of the Active Site Cavity of Druggable Human Carbonic Anhydrase Isoforms. ACS Medicinal Chemistry Letters, 2020, 11, 1000-1005.	1.3	6
12	α-Carbonic anhydrases. , 2019, , 19-54.		2
13	Î and Î ₋ -carbonic anhydrases. , 2019, , 139-148.		1
14	Exploration of the residues modulating the catalytic features of human carbonic anhydrase XIII by a site-specific mutagenesis approach. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1506-1510.	2.5	7
15	Exploring structural properties of potent human carbonic anhydrase inhibitors bearing a 4-(cycloalkylamino-1-carbonyl)benzenesulfonamide moiety. European Journal of Medicinal Chemistry, 2019, 163, 443-452.	2.6	31
16	Exploring benzoxaborole derivatives as carbonic anhydrase inhibitors: a structural and computational analysis reveals their conformational variability as a tool to increase enzyme selectivity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1498-1505.	2.5	7
17	Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: Three for the price of one. Medicinal Research Reviews, 2018, 38, 1799-1836.	5.0	207
18	Protective Role of Carbonic Anhydrases III and VII in Cellular Defense Mechanisms upon Redox Unbalance. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-9.	1.9	32

#	Article	IF	CITATIONS
19	The Crystal Structure of a hCA VII Variant Provides Insights into the Molecular Determinants Responsible for Its Catalytic Behavior. International Journal of Molecular Sciences, 2018, 19, 1571.	1.8	23
20	Disclosing the Interaction of Carbonic Anhydrase IX with Cullin-Associated NEDD8-Dissociated Protein 1 by Molecular Modeling and Integrated Binding Measurements. ACS Chemical Biology, 2017, 12, 1460-1465.	1.6	17
21	Probing Molecular Interactions between Human Carbonic Anhydrases (hCAs) and a Novel Class of Benzenesulfonamides. Journal of Medicinal Chemistry, 2017, 60, 4316-4326.	2.9	40
22	Insights into the role of reactive sulfhydryl groups of Carbonic Anhydrase III and VII during oxidative damage. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 5-12.	2.5	35
23	The anticonvulsant sulfamide JNJ-26990990 and its S,S-dioxide analog strongly inhibit carbonic anhydrases: solution and X-ray crystallographic studies. Organic and Biomolecular Chemistry, 2016, 14, 4853-4858.	1.5	26
24	Benzoxaborole as a new chemotype for carbonic anhydrase inhibition. Chemical Communications, 2016, 52, 11983-11986.	2.2	69
25	Carbonic Anhydrase VII. , 2015, , 151-168.		1
26	Thermostable Carbonic Anhydrases in Biotechnological Applications. International Journal of Molecular Sciences, 2015, 16, 15456-15480.	1.8	66
27	Recent Developments of Carbonic Anhydrase Inhibitors as Potential Drugs. BioMed Research International, 2015, 2015, 1-2.	0.9	4
28	Hydroxylamine-O-sulfonamide is a versatile lead compound for the development of carbonic anhydrase inhibitors. Chemical Communications, 2015, 51, 11519-11522.	2.2	10
29	The zinc coordination pattern in the Îcarbonic anhydrase from Plasmodium falciparum is different from all other carbonic anhydrase genetic families. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1385-1389.	1.0	108
30	Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2002-2006.	1.0	72
31	X-ray crystallographic and kinetic investigations of 6-sulfamoyl-saccharin as a carbonic anhydrase inhibitor. Organic and Biomolecular Chemistry, 2015, 13, 4064-4069.	1.5	26
32	Hydrophobic Substituents of the Phenylmethylsulfamide Moiety Can Be Used for the Development of New Selective Carbonic Anhydrase Inhibitors. BioMed Research International, 2014, 2014, 1-11.	0.9	14
33	Faox enzymes inhibited Maillard reaction development during storage both in protein glucose model system and low lactose UHT milk. Amino Acids, 2014, 46, 279-288.	1.2	27
34	X-ray structure of the first `extremo-α-carbonic anhydrase', a dimeric enzyme from the thermophilic bacterium <i>Sulfurihydrogenibium yellowstonense</i> YO3AOP1. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1150-1159.	2.5	100
35	Multiple Binding Modes of Inhibitors to Carbonic Anhydrases: How to Design Specific Drugs Targeting 15 Different Isoforms?. Chemical Reviews, 2012, 112, 4421-4468.	23.0	1,056
36	Hydroxamate represents a versatile zinc binding group for the development of new carbonic anhydrase inhibitors. Chemical Communications, 2012, 48, 8838.	2.2	63

#	Article	IF	CITATIONS
37	Carbonic anhydrase VII is S-glutathionylated without loss of catalytic activity and affinity for sulfonamide inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1560-1564.	1.0	53
38	Carbonic anhydrase inhibitors: X-ray crystallographic studies for the binding of N-substituted benzenesulfonamides to human isoform II. Chemical Communications, 2011, 47, 11636.	2.2	50
39	Recent Advances in Structural Studies of the Carbonic Anhydrase Family: The Crystal Structure of Human CA IX and CA XIII. Current Pharmaceutical Design, 2010, 16, 3246-3254.	0.9	32
40	Carbonic anhydrase inhibitors: Crystallographic and solution binding studies for the interaction of a boron-containing aromatic sulfamide with mammalian isoforms l–XV. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3601-3605.	1.0	27
41	Crystal structure of the C183S/C217S mutant of human CA VII in complex with acetazolamide. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5023-5026.	1.0	81
42	Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16233-16238.	3.3	451
43	Crystal structure of human carbonic anhydrase XIII and its complex with the inhibitor acetazolamide. Proteins: Structure, Function and Bioinformatics, 2009, 74, 164-175.	1.5	97
44	Structural Analysis of BldR from Sulfolobus solfataricus Provides Insights into the Molecular Basis of Transcriptional Activation in Archaea by MarR Family Proteins. Journal of Molecular Biology, 2009, 388, 559-569.	2.0	31
45	Carbonic anhydrase inhibitors: The X-ray crystal structure of ethoxzolamide complexed to human isoform II reveals the importance of thr200 and gln92 for obtaining tight-binding inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2669-2674.	1.0	35
46	Carbonic anhydrase inhibitors as emerging drugs for the treatment of obesity. Expert Opinion on Emerging Drugs, 2008, 13, 383-392.	1.0	165
47	Biochemical Characterization of CA IX, One of the Most Active Carbonic Anhydrase Isozymes. Journal of Biological Chemistry, 2008, 283, 27799-27809.	1.6	258
48	Structure–Activity Relationships of C-17 Cyano-Substituted Estratrienes as Anticancer Agents. Journal of Medicinal Chemistry, 2008, 51, 1295-1308.	2.9	50
49	Anticancer steroid sulfatase inhibitors: synthesis of a potent fluorinated second-generation agent, <i>in vitro</i> and <i>in vivo</i> activities, molecular modeling, and protein crystallography. Molecular Cancer Therapeutics, 2008, 7, 2435-2444.	1.9	39
50	Are Carbonic Anhydrase Inhibitors Suitable for Obtaining Antiobesity Drugs ?. Current Pharmaceutical Design, 2008, 14, 655-660.	0.9	150
51	Carbonic anhydrase inhibitors: Binding of an antiglaucoma glycosyl-sulfanilamide derivative to human isoform II and its consequences for the drug design of enzyme inhibitors incorporating sugar moieties. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1726-1731.	1.0	38
52	2-Substituted Estradiol Bis-sulfamates, Multitargeted Antitumor Agents:Â Synthesis, In Vitro SAR, Protein Crystallography, and In Vivo Activityâ€. Journal of Medicinal Chemistry, 2006, 49, 7683-7696.	2.9	98
53	Carbonic Anhydrase Inhibitors:Â Hypoxia-Activatable Sulfonamides Incorporating Disulfide Bonds that Target the Tumor-Associated Isoform IXâ€. Journal of Medicinal Chemistry, 2006, 49, 5544-5551.	2.9	100
54	Carbonic anhydrase inhibitors: Valdecoxib binds to a different active site region of the human isoform II as compared to the structurally related cyclooxygenase II †selective' inhibitor celecoxib. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 437-442.	1.0	93

#	Article	IF	CITATIONS
55	Carbonic anhydrase inhibitors: X-ray crystallographic studies for the binding of 5-amino-1,3,4-thiadiazole-2-sulfonamide and 5-(4-amino-3-chloro-5-fluorophenylsulfonamido)-1,3,4-thiadiazole-2-sulfonamide to human isoform II. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 6204-6208.	1.0	32
56	Carbonic anhydrase inhibitors: X-ray crystal structure of a benzenesulfonamide strong CA II and CA IX inhibitor bearing a pentafluorophenylaminothioureido tail in complex with isozyme II. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1937-1942.	1.0	40
57	Carbonic anhydrase inhibitors. Zonisamide is an effective inhibitor of the cytosolic isozyme II and mitochondrial isozyme V: solution and X-ray crystallographic studies. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2315-2320.	1.0	176
58	The Importance of Dynamic Effects on the Enzyme Activity. Journal of Biological Chemistry, 2005, 280, 17953-17960.	1.6	49
59	The Role of the Hinge Loop in Domain Swapping. Journal of Biological Chemistry, 2005, 280, 13771-13778.	1.6	29
60	Carbonic Anhydrase Inhibitors:Â Stacking with Phe131 Determines Active Site Binding Region of Inhibitors As Exemplified by the X-ray Crystal Structure of a Membrane-Impermeant Antitumor Sulfonamide Complexed with Isozyme II. Journal of Medicinal Chemistry, 2005, 48, 5721-5727.	2.9	157
61	Structure and Stability of the Non-covalent Swapped Dimer of Bovine Seminal Ribonuclease. Journal of Biological Chemistry, 2004, 279, 36753-36760.	1.6	33
62	The unswapped chain of bovine seminal ribonuclease: Crystal structure of the free and liganded monomeric derivative. Proteins: Structure, Function and Bioinformatics, 2003, 52, 263-271.	1.5	17