
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8581385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parkinson disease. Nature Reviews Disease Primers, 2017, 3, 17013.	30.5	3,048
2	Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nature Medicine, 2008, 14, 501-503.	30.7	1,595
3	Pathogenesis of parkinson's disease: dopamine, vesicles and α-synuclein. Nature Reviews Neuroscience, 2002, 3, 932-942.	10.2	1,070
4	The Ubiquitin Proteasome System in Neurodegenerative Diseases. Neuron, 2003, 40, 427-446.	8.1	909
5	α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. Journal of Clinical Investigation, 2011, 121, 715-725.	8.2	722
6	Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nature Neuroscience, 1999, 2, 1137-1140.	14.8	663
7	Prion-like transmission of protein aggregates in neurodegenerative diseases. Nature Reviews Molecular Cell Biology, 2010, 11, 301-307.	37.0	640
8	A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. Journal of Experimental Medicine, 2008, 205, 1869-1877.	8.5	559
9	Bilateral Fetal Mesencephalic Grafting in Two Patients with Parkinsonism Induced by 1-Methyl-4-Phenyl-L,2,3,6-Tetrahydropyridine (MPTP). New England Journal of Medicine, 1992, 327, 1556-1563.	27.0	558
10	Increased Sensitivity to N-Methyl-D-Aspartate Receptor-Mediated Excitotoxicity in a Mouse Model of Huntington's Disease. Neuron, 2002, 33, 849-860.	8.1	553
11	Caspase signalling controls microglia activation and neurotoxicity. Nature, 2011, 472, 319-324.	27.8	491
12	Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clinics in Geriatric Medicine, 2020, 36, 1-12.	2.6	487
13	Dyskinesias following neural transplantation in Parkinson's disease. Nature Neuroscience, 2002, 5, 627-628.	14.8	424
14	Transplantation of fetal dopamine neurons in Parkinson's disease: One-year clinical and neurophysiological observations in two patients with putaminal implants. Annals of Neurology, 1992, 31, 155-165.	5.3	359
15	Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson's disease. Annals of Neurology, 1997, 42, 95-107.	5.3	331
16	Mechanisms of action of intracerebral neural implants: studies on nigral and striatal grafts to the lesioned striatum. Trends in Neurosciences, 1987, 10, 509-516.	8.6	328
17	Improving the Survival of Grafted Dopaminergic Neurons: A Review over Current Approaches. Cell Transplantation, 2000, 9, 179-195.	2.5	327
18	Neural transplantation for the treatment of Parkinson's disease. Lancet Neurology, The, 2003, 2, 437-445.	10.2	322

#	Article	IF	CITATIONS
19	Parkinson's Disease and Alpha Synuclein: Is Parkinson's Disease a Prionâ€Like Disorder?. Movement Disorders, 2013, 28, 31-40.	3.9	320
20	Beyond the brain: widespread pathology in Huntington's disease. Lancet Neurology, The, 2009, 8, 765-774.	10.2	312
21	Widespread transneuronal propagation of α-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson's disease. Journal of Experimental Medicine, 2016, 213, 1759-1778.	8.5	309
22	Acceleration of α-Synuclein Aggregation by Exosomes. Journal of Biological Chemistry, 2015, 290, 2969-2982.	3.4	305
23	Transplantation of fetal dopamine neurons in Parkinson's disease: PET {18F}6-L-fluorodopa studies in two patients with putaminal implants. Annals of Neurology, 1992, 31, 166-173.	5.3	304
24	Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson's disease in mice. Behavioural Brain Research, 2005, 162, 1-10.	2.2	299
25	Effect of Mutant α-Synuclein on Dopamine Homeostasis in a New Human Mesencephalic Cell Line. Journal of Biological Chemistry, 2002, 277, 38884-38894.	3.4	297
26	Research in motion: the enigma of Parkinson's disease pathology spread. Nature Reviews Neuroscience, 2008, 9, 741-745.	10.2	296
27	Caspase inhibition reduces apoptosis and increases survival of nigral transplants. Nature Medicine, 1999, 5, 97-100.	30.7	279
28	Monitoring of cell viability in suspensions of embryonic CNS tissue and its use as a criterion for intracerebral graft survival. Brain Research, 1985, 331, 251-259.	2.2	272
29	Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts. Nature, 1990, 347, 556-558.	27.8	258
30	Long-term Clinical Outcome of Fetal Cell Transplantation for Parkinson Disease. JAMA Neurology, 2014, 71, 83.	9.0	257
31	Delayed recovery of movement-related cortical function in Parkinson's disease after striatal dopaminergic grafts. Annals of Neurology, 2000, 48, 689-695.	5.3	246
32	Orexin loss in Huntington's disease. Human Molecular Genetics, 2005, 14, 39-47.	2.9	246
33	No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proceedings of the United States of America, 2004, 101, 10177-10182.	7.1	240
34	In vivo release of DOPA and dopamine from genetically engineered cells grafted to the denervated rat striatum. Neuron, 1990, 5, 393-402.	8.1	236
35	Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6544-6549.	7.1	235
36	Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson's disease. Human Molecular Genetics, 2002, 11, 2395-2407.	2.9	226

#	Article	IF	CITATIONS
37	Are synucleinopathies prion-like disorders?. Lancet Neurology, The, 2010, 9, 1128-1138.	10.2	226
38	Progressive Degeneration of Human Mesencephalic Neuron-Derived Cells Triggered by Dopamine-Dependent Oxidative Stress Is Dependent on the Mixed-Lineage Kinase Pathway. Journal of Neuroscience, 2005, 25, 6329-6342.	3.6	224
39	Transfer of human α-synuclein from the olfactory bulb to interconnected brain regions in mice. Acta Neuropathologica, 2013, 126, 555-573.	7.7	224
40	Alpha-Synuclein Cell-to-Cell Transfer and Seeding in Grafted Dopaminergic Neurons In Vivo. PLoS ONE, 2012, 7, e39465.	2.5	218
41	Triggers, Facilitators, and Aggravators: Redefining Parkinson's Disease Pathogenesis. Trends in Neurosciences, 2019, 42, 4-13.	8.6	216
42	Alphaâ€synuclein transfers from neurons to oligodendrocytes. Glia, 2014, 62, 387-398.	4.9	215
43	The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiology of Disease, 2018, 109, 226-248.	4.4	214
44	Prying into the Prion Hypothesis for Parkinson's Disease. Journal of Neuroscience, 2017, 37, 9808-9818.	3.6	213
45	The vermiform appendix impacts the risk of developing Parkinson's disease. Science Translational Medicine, 2018, 10, .	12.4	205
46	Therapeutic approaches to target alpha-synuclein pathology. Experimental Neurology, 2017, 298, 225-235.	4.1	197
47	Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology, 2019, 92, 329-337.	1.1	194
48	Cell Survival and Clinical Outcome Following Intrastriatal Transplantation in Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2001, 60, 741-752.	1.7	190
49	Inflammation and α-Synuclein's Prion-like Behavior in Parkinson's Disease—Is There a Link?. Molecular Neurobiology, 2013, 47, 561-574.	4.0	186
50	Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington's disease. Human Molecular Genetics, 2011, 20, 2225-2237.	2.9	183
51	Characterization of Lewy body pathology in 12―and 16â€yearâ€old intrastriatal mesencephalic grafts surviving in a patient with Parkinson's disease. Movement Disorders, 2010, 25, 1091-1096.	3.9	181
52	The Adult Human Brain Harbors Multipotent Perivascular Mesenchymal Stem Cells. PLoS ONE, 2012, 7, e35577.	2.5	177
53	The use of the R6 transgenic mouse models of Huntington's disease in attempts to develop novel therapeutic strategies. NeuroRx, 2005, 2, 447-464.	6.0	174
54	Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends in Neurosciences, 2008, 31, 146-153.	8.6	171

#	Article	IF	CITATIONS
55	Neuronal Properties, In Vivo Effects, and Pathology of a Huntington's Disease Patient-Derived Induced Pluripotent Stem Cells. Stem Cells, 2012, 30, 2054-2062.	3.2	167
56	Reduced hippocampal neurogenesis in R6/2 transgenic Huntington's disease mice. Neurobiology of Disease, 2005, 20, 744-751.	4.4	158
57	Spread of aggregates after olfactory bulb injection of α-synuclein fibrils is associated with early neuronal loss and is reduced long term. Acta Neuropathologica, 2018, 135, 65-83.	7.7	154
58	Overexpressing Cu/Zn superoxide dismutase enhances survival of transplanted neurons in a rat model of Parkinson's disease. Nature Medicine, 1995, 1, 226-231.	30.7	146
59	Biomarkerâ€driven phenotyping in Parkinson's disease: A translational missing link in diseaseâ€modifying clinical trials. Movement Disorders, 2017, 32, 319-324.	3.9	145
60	Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson's disease. Science Translational Medicine, 2016, 8, 368ra174.	12.4	143
61	Precision medicine for disease modification in Parkinson disease. Nature Reviews Neurology, 2017, 13, 119-126.	10.1	141
62	Microglia affect α-synuclein cell-to-cell transfer in a mouse model of Parkinson's disease. Molecular Neurodegeneration, 2019, 14, 34.	10.8	141
63	Resistance to NMDA toxicity correlates with appearance of nuclear inclusions, behavioural deficits and changes in calcium homeostasis in mice transgenic for exon 1 of the huntington gene. European Journal of Neuroscience, 2001, 14, 1492-1504.	2.6	140
64	Targeted Therapies for Parkinson's Disease: From Genetics to the Clinic. Movement Disorders, 2018, 33, 684-696.	3.9	140
65	The concept of alpha-synuclein as a prion-like protein: ten years after. Cell and Tissue Research, 2018, 373, 161-173.	2.9	138
66	Impact of the <scp>COVID</scp> â€19 Pandemic on Parkinson's Disease and Movement Disorders. Movement Disorders, 2020, 35, 711-715.	3.9	134
67	The R6/2 transgenic mouse model of Huntington's disease develops diabetes due to deficient β-cell mass and exocytosis. Human Molecular Genetics, 2005, 14, 565-574.	2.9	129
68	Neurogenin2 Directs Granule Neuroblast Production and Amplification while NeuroD1 Specifies Neuronal Fate during Hippocampal Neurogenesis. PLoS ONE, 2009, 4, e4779.	2.5	129
69	Membrane Interaction of α-Synuclein in Different Aggregation States. Journal of Parkinson's Disease, 2011, 1, 359-371.	2.8	123
70	Progressive alterations in the hypothalamic-pituitary-adrenal axis in the R6/2 transgenic mouse model of Huntington's disease. Human Molecular Genetics, 2006, 15, 1713-1721.	2.9	122
71	Neural grafting in Parkinson's disease. Progress in Brain Research, 2010, 184, 265-294.	1.4	120
72	Overexpression of heat shock protein 70 in R6/2 Huntington's disease mice has only modest effects on disease progression. Brain Research, 2003, 970, 47-57.	2.2	117

#	Article	IF	CITATIONS
73	Increased metabolism in the R6/2 mouse model of Huntington's disease. Neurobiology of Disease, 2008, 29, 41-51.	4.4	114
74	Chapter 24 Survival, growth and function of dopaminergic neurons grafted to the brain. Progress in Brain Research, 1987, 71, 293-308.	1.4	110
75	α‣ynuclein: The Long Distance Runner. Brain Pathology, 2013, 23, 350-357.	4.1	107
76	Disease modification and biomarker development in Parkinson disease. Neurology, 2020, 94, 481-494.	1.1	103
77	Effects of cool storage on survival and function of intrastriatal ventral mesencephalic grafts. Restorative Neurology and Neuroscience, 1991, 2, 123-135.	0.7	101
78	Alphaâ€synuclein propagation: New insights from animal models. Movement Disorders, 2016, 31, 161-168.	3.9	100
79	ls COVID-19 a Perfect Storm for Parkinson's Disease?. Trends in Neurosciences, 2020, 43, 931-933.	8.6	99
80	Can Parkinson's disease pathology be propagated from one neuron to another?. Progress in Neurobiology, 2012, 97, 205-219.	5.7	97
81	Gut feelings about smoking and coffee in Parkinson's disease. Movement Disorders, 2014, 29, 976-979.	3.9	91
82	Signs of Degeneration in 12–22-Year Old Grafts of Mesencephalic Dopamine Neurons in Patients with Parkinson's Disease. Journal of Parkinson's Disease, 2011, 1, 83-92.	2.8	90
83	Adsorption of α-Synuclein to Supported Lipid Bilayers: Positioning and Role of Electrostatics. ACS Chemical Neuroscience, 2013, 4, 1339-1351.	3.5	82
84	Sorting out release, uptake and processing of alphaâ€synuclein during prionâ€like spread of pathology. Journal of Neurochemistry, 2016, 139, 275-289.	3.9	77
85	Progressive nigrostriatal terminal dysfunction and degeneration in the engrailed1 heterozygous mouse model of Parkinson's disease. Neurobiology of Disease, 2015, 73, 70-82.	4.4	74
86	Gut Microbiota Dysbiosis Is Associated with Elevated Bile Acids in Parkinson's Disease. Metabolites, 2021, 11, 29.	2.9	74
87	A cell culture model for monitoring α-synuclein cell-to-cell transfer. Neurobiology of Disease, 2015, 77, 266-275.	4.4	72
88	α-Synuclein conformational strains spread, seed and target neuronal cells differentially after injection into the olfactory bulb. Acta Neuropathologica Communications, 2019, 7, 221.	5.2	70
89	Sequential Intracerebral Transplantation of Allogeneic and Syngeneic Fetal Dopamine-Rich Neuronal Tissue in Adult Rats: Will the First Graft be Rejected?. Cell Transplantation, 1993, 2, 307-317.	2.5	69
90	Immunotherapy in Parkinson's Disease: Micromanaging Alpha-Synuclein Aggregation. Journal of Parkinson's Disease, 2015, 5, 413-424.	2.8	69

#	Article	IF	CITATIONS
91	Tryptophan Metabolites Are Associated With Symptoms and Nigral Pathology in Parkinson's Disease. Movement Disorders, 2020, 35, 2028-2037.	3.9	64
92	What's to like about the prion-like hypothesis for the spreading of aggregated α-synuclein in Parkinson disease?. Prion, 2013, 7, 92-97.	1.8	63
93	The role of Galectin-3 in α-synuclein-induced microglial activation. Acta Neuropathologica Communications, 2014, 2, 156.	5.2	63
94	Spreading of Î \pm -synuclein in the face of axonal transport deficits in Parkinson's disease: A speculative synthesis. Neurobiology of Disease, 2015, 77, 276-283.	4.4	59
95	How strong is the evidence that Parkinson's disease is a prion disorder?. Current Opinion in Neurology, 2016, 29, 459-466.	3.6	59
96	Prion-like propagation of pathology in Parkinson disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 153, 321-335.	1.8	58
97	Are Stem Cell-Based Therapies for Parkinson's Disease Ready for the Clinic in 2016?. Journal of Parkinson's Disease, 2016, 6, 57-63.	2.8	57
98	Targeting energy metabolism via the mitochondrial pyruvate carrier as a novel approach to attenuate neurodegeneration. Molecular Neurodegeneration, 2018, 13, 28.	10.8	57
99	Endogenous alpha-synuclein monomers, oligomers and resulting pathology: let's talk about the lipids in the room. Npj Parkinson's Disease, 2019, 5, 23.	5.3	57
100	Neural connectivity predicts spreading of alpha-synuclein pathology in fibril-injected mouse models: Involvement of retrograde and anterograde axonal propagation. Neurobiology of Disease, 2020, 134, 104623.	4.4	57
101	Biochemical Profiling of the Brain and Blood Metabolome in a Mouse Model of Prodromal Parkinson's Disease Reveals Distinct Metabolic Profiles. Journal of Proteome Research, 2018, 17, 2460-2469.	3.7	56
102	Can infections trigger alpha-synucleinopathies?. Progress in Molecular Biology and Translational Science, 2019, 168, 299-322.	1.7	55
103	Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington's disease is dependent on age and CAG repeat length. Journal of Neurochemistry, 2001, 78, 694-703.	3.9	53
104	Enrichment of risk SNPs in regulatory regions implicate diverse tissues in Parkinson's disease etiology. Scientific Reports, 2016, 6, 30509.	3.3	53
105	A Proposed Roadmap for Parkinson's Disease Proof of Concept Clinical Trials Investigating Compounds Targeting Alpha-Synuclein. Journal of Parkinson's Disease, 2019, 9, 31-61.	2.8	45
106	Neuropathology in transplants in Parkinson's disease. Progress in Brain Research, 2012, 200, 221-241.	1.4	43
107	Alpha-Synuclein to the Rescue: Immune Cell Recruitment by Alpha-Synuclein during Gastrointestinal Infection. Journal of Innate Immunity, 2017, 9, 437-440.	3.8	43
108	Lewy body pathology in long-term fetal nigral transplants: is parkinson's disease transmitted from one neural system to another?. Neuropsychopharmacology, 2009, 34, 254-254.	5.4	40

#	Article	IF	CITATIONS
109	Survival of expanded dopaminergic precursors is critical for clinical trials. Nature Neuroscience, 1998, 1, 537-537.	14.8	39
110	Differential effects of Bcl-2 overexpression on fibre outgrowth and survival of embryonic dopaminergic neurons in intracerebral transplants. European Journal of Neuroscience, 1999, 11, 3073-3081.	2.6	39
111	Mice transgenic for exon 1 of the Huntington's disease gene display reduced striatal sensitivity to neurotoxicity induced by dopamine and 6-hydroxydopamine. European Journal of Neuroscience, 2001, 14, 1425-1435.	2.6	39
112	Quinolinic acid-induced inflammation in the striatum does not impair the survival of neural allografts in the rat. European Journal of Neuroscience, 1998, 10, 2595-2606.	2.6	38
113	Novel animal model defines genetic contributions for neuron-to-neuron transfer of α-synuclein. Scientific Reports, 2017, 7, 7506.	3.3	37
114	Impact of the <scp>COVID</scp> â€19 Pandemic on Parkinson's Disease and Movement Disorders. Movement Disorders Clinical Practice, 2020, 7, 357-360.	1.5	37
115	Linked Clinical Trials – The Development of New Clinical Learning Studies in Parkinson's Disease Using Screening of Multiple Prospective New Treatments. Journal of Parkinson's Disease, 2013, 3, 231-239.	2.8	35
116	Metabolomic Profiling of Bile Acids in an Experimental Model of Prodromal Parkinson's Disease. Metabolites, 2018, 8, 71.	2.9	35
117	New Frontiers in Parkinson's Disease: From Genetics to the Clinic. Journal of Neuroscience, 2018, 38, 9375-9382.	3.6	32
118	Recent Advances in the Development of Stemâ€Cellâ€Derived Dopaminergic Neuronal Transplant Therapies for Parkinson's Disease. Movement Disorders, 2021, 36, 1772-1780.	3.9	31
119	Deficits in olfactory sensitivity in a mouse model of Parkinson's disease revealed by plethysmography of odor-evoked sniffing. Scientific Reports, 2020, 10, 9242.	3.3	30
120	Nilotinib – Differentiating the Hope fromÂtheÂHype. Journal of Parkinson's Disease, 2016, 6, 519-522.	2.8	29
121	Is Exenatide a Treatment for Parkinson's Disease?. Journal of Parkinson's Disease, 2017, 7, 451-458.	2.8	29
122	Precision medicine in Parkinson's disease patients with LRRK2 and GBA risk variants – Let's get even more personal. Translational Neurodegeneration, 2020, 9, 39.	8.0	29
123	NGF Rescues Hippocampal Cholinergic Neuronal Markers, Restores Neurogenesis, and Improves the Spatial Working Memory in a Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2013, 2, 69-82.	1.9	28
124	Optimizing maturity and dose of iPSC-derived dopamine progenitor cell therapy for Parkinson's disease. Npj Regenerative Medicine, 2022, 7, 24.	5.2	28
125	Upregulation of α-synuclein following immune activation: Possible trigger of Parkinson's disease. Neurobiology of Disease, 2022, 166, 105654.	4.4	27
126	Recommendations of the Global Multiple System Atrophy Research Roadmap Meeting. Neurology, 2018, 90, 74-82.	1.1	23

#	Article	IF	CITATIONS
127	Is the Enzyme ACMSD a Novel Therapeutic Target in Parkinson's Disease?. Journal of Parkinson's Disease, 2017, 7, 577-587.	2.8	22
128	Addition of Lateral Ganglionic Eminence to Rat Mesencephalic Grafts Affects Fiber Outgrowth but Does not Enhance Function. Cell Transplantation, 1997, 6, 277-286.	2.5	18
129	Basic science breaks through: New therapeutic advances in Parkinson's disease. Movement Disorders, 2015, 30, 1521-1527.	3.9	17
130	Drug Repurposing for Parkinson's Disease: The International Linked Clinical Trials experience. Frontiers in Neuroscience, 2021, 15, 653377.	2.8	17
131	The Linked Clinical Trials initiative (<scp>LCT</scp>) for Parkinson's disease. European Journal of Neuroscience, 2019, 49, 307-315.	2.6	16
132	Cancer enzyme affects Parkinson's disease. Science, 2018, 362, 521-522.	12.6	14
133	Heterozygous GBA D409V and ATP13a2 mutations do not exacerbate pathological α-synuclein spread in the prodromal preformed fibrils model in young mice. Neurobiology of Disease, 2021, 159, 105513.	4.4	14
134	Digesting recent findings: gut alpha-synuclein, microbiome changes in Parkinson's disease. Trends in Endocrinology and Metabolism, 2022, 33, 147-157.	7.1	14
135	The roles of connectivity and neuronal phenotype in determining the pattern of α-synuclein pathology in Parkinson's disease. Neurobiology of Disease, 2022, 168, 105687.	4.4	14
136	Laying the foundations for disease-modifying therapies in PD. Nature Reviews Neurology, 2015, 11, 553-555.	10.1	13
137	Perturbation of in vivo Neural Activity Following α-Synuclein Seeding in the Olfactory Bulb. Journal of Parkinson's Disease, 2020, 10, 1411-1427.	2.8	13
138	Loss of One Engrailed1 Allele Enhances Induced α-Synucleinopathy. Journal of Parkinson's Disease, 2019, 9, 315-326.	2.8	12
139	Decreased Risk of Parkinson's Disease After Rheumatoid Arthritis Diagnosis: A Nested Case-Control Study with Matched Cases and Controls. Journal of Parkinson's Disease, 2021, 11, 821-832.	2.8	12
140	Mitomycin-C treatment during differentiation of induced pluripotent stem cell-derived dopamine neurons reduces proliferation without compromising survival or function in vivo. Stem Cells Translational Medicine, 2021, 10, 278-290.	3.3	12
141	An extended release GLP-1 analogue increases α-synuclein accumulation in a mouse model of prodromal Parkinson's disease. Experimental Neurology, 2021, 341, 113693.	4.1	10
142	Novel approaches to counter protein aggregation pathology in Parkinson's disease. Progress in Brain Research, 2020, 252, 451-492.	1.4	9
143	CuZn superoxide dismutase transgenic retinal transplants. Graefe's Archive for Clinical and Experimental Ophthalmology, 1999, 237, 336-341.	1.9	7
144	Solving the conundrum of insoluble protein aggregates. Lancet Neurology, The, 2017, 16, 258-259.	10.2	7

#	Article	IF	CITATIONS
145	Low plasma serotonin linked to higher nigral iron in Parkinson's disease. Scientific Reports, 2021, 11, 24384.	3.3	7
146	Important Aspects of Surgical Methodology for Transplantation in Parkinson's Disease. , 2006, , 131-165.		6
147	Direct targeting of wild-type glucocerebrosidase by antipsychotic quetiapine improves pathogenic phenotypes in Parkinson's disease models. JCI Insight, 2021, 6, .	5.0	6
148	Is Exenatide the Next Big Thing in Parkinson's Disease?. Journal of Parkinson's Disease, 2014, 4, 345-347.	2.8	4
149	Axonal transport dysfunction in neurodegenerative diseases: the "holy grail―for developing disease modifying therapies?. Neurobiology of Disease, 2017, 105, 271-272.	4.4	4
150	Methylated Cytochrome P450 and the Solute Carrier Family of Genes Correlate With Perturbations in Bile Acid Metabolism in Parkinson's Disease. Frontiers in Neuroscience, 2022, 16, 804261.	2.8	4
151	Fire prevention in the Parkinson's disease brain. Nature Medicine, 2018, 24, 900-902.	30.7	3
152	Mechanisms for cell-to-cell propagation no longer lag behind. Movement Disorders, 2016, 31, 1798-1799.	3.9	2
153	Editorial: Pathogenic templating proteins in Neurodegenerative Disease. Neurobiology of Disease, 2018, 109, 175-177.	4.4	2
154	Lots of Movement in Gut and Parkinson's Research. Trends in Endocrinology and Metabolism, 2019, 30, 687-689.	7.1	2
155	Genetically engineered stem cellâ€derived neurons can be rendered resistant to alphaâ€synuclein aggregate pathology. European Journal of Neuroscience, 2019, 49, 316-319.	2.6	2
156	Alterations in odor hedonics in the 5XFAD Alzheimer's disease mouse model and the influence of sex Behavioral Neuroscience, 2020, 134, 407-416.	1.2	2
157	Inhibiting the mitochondrial pyruvate carrier does not ameliorate synucleinopathy in the absence of inflammation or metabolic deficits Free Neuropathology, 2020, 1, .	3.0	2
158	Journal of Parkinson's Disease. Journal of Parkinson's Disease, 2011, 1, 1-1.	2.8	1
159	Prion-like transmission of protein aggregates in neurodegenerative diseases. , 0, .		1
160	Maternal Herpesviridae infection during pregnancy alters midbrain dopaminergic signatures in adult offspring. Neurobiology of Disease, 2022, 169, 105720.	4.4	1
161	Future Cell- and Gene-Based Therapies for Parkinson's Disease. , 2008, , 145-156.		0
162	Prion-Like Propagation in Neurodegenerative Diseases. , 2018, , 189-242.		0

#	Article	IF	CITATIONS
163	Alterations in odor hedonics in the 5XFAD Alzheimer's disease mouse model and the influence of sex. Behavioral Neuroscience, 2020, 134, 407-416.	1.2	0