Mohamed Elwekeil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8581366/publications.pdf

Version: 2024-02-01

840776 794594 36 396 11 19 citations h-index g-index papers 36 36 36 221 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Deep Learning Model for Earthquake Parameters Observation in IoT System-Based Earthquake Early Warning. IEEE Internet of Things Journal, 2022, 9, 8412-8424.	8.7	43
2	Comparative Performance Assessments of Machine-Learning Methods for Artificial Seismic Sources Discrimination. IEEE Access, 2021, 9, 65524-65535.	4.2	35
3	Development of an Optimized Regression Model to Predict Blast-Driven Ground Vibrations. IEEE Access, 2021, 9, 31826-31841.	4.2	35
4	A Deep Autoencoder Trust Model for Mitigating Jamming Attack in IoT Assisted by Cognitive Radio. IEEE Systems Journal, 2022, 16, 3635-3645.	4.6	34
5	Integrating Pre-Earthquake Signatures From Different Precursor Tools. IEEE Access, 2021, 9, 33268-33283.	4.2	33
6	Prolonging smart grid network lifetime through optimising number of sensor nodes and packet length. IET Communications, 2019, 13, 2478-2484.	2.2	30
7	Deep Convolutional Neural Networks for Link Adaptations in MIMO-OFDM Wireless Systems. IEEE Wireless Communications Letters, 2019, 8, 665-668.	5.0	24
8	Deep convolutional neural networks for <scp>COVIDâ€19</scp> automatic diagnosis. Microscopy Research and Technique, 2021, 84, 2504-2516.	2.2	19
9	Efficient anomaly detection from medical signals and images. International Journal of Speech Technology, 2019, 22, 739-767.	2.2	18
10	Deep-VFog: When Artificial Intelligence Meets Fog Computing in V2X. IEEE Systems Journal, 2021, 15, 3492-3505.	4.6	14
11	Resource and power allocation for achieving rate fairness in D2D communications overlaying cellular networks. Wireless Networks, 2019, 25, 4049-4058.	3.0	12
12	Deepâ€learningâ€based seizure detection and prediction from electroencephalography signals. International Journal for Numerical Methods in Biomedical Engineering, 2022, 38, e3573.	2.1	11
13	Hybrid classification structures for automatic COVID-19 detection. Journal of Ambient Intelligence and Humanized Computing, 2022, 13, 4477-4492.	4.9	11
14	Subcarrier-User Assignment in Downlink NOMA for Improving Spectral Efficiency and Fairness. IEEE Access, 2021, 9, 5273-5284.	4.2	10
15	Efficient Frameworks for EEG Epileptic Seizure Detection and Prediction. Annals of Data Science, 0, , 1.	3.2	9
16	Deep Learning for Joint Adaptations of Transmission Rate and Payload Length in Vehicular Networks. Sensors, 2019, 19, 1113.	3.8	8
17	Hilbert Transform and Statistical Analysis for Channel Selection and Epileptic Seizure Prediction. Wireless Personal Communications, 2021, 116, 3371-3395.	2.7	8
18	Performance evaluation of an adaptive self-organizing frequency reuse approach for OFDMA downlink. Wireless Networks, 2019, 25, 507-519.	3.0	6

#	Article	IF	Citations
19	Deep Learning for Environment Identification in Vehicular Networks. IEEE Wireless Communications Letters, 2020, 9, 576-580.	5.0	6
20	Efficient user pairing algorithm for enhancement of spectral efficiency and interference cancelation in downlink NOMA system. Wireless Networks, 2021, 27, 1035-1047.	3.0	6
21	Midâ€symbol duration antenna transition approach for performance enhancement of spatial modulation. Electronics Letters, 2018, 54, 506-507.	1.0	4
22	Lagrangian relaxation approach for low complexity channel assignment in multi-cell wlans. , 2013, , .		3
23	An adaptive algorithm for channel assignment and load balancing in elastic IEEE 802.11 WLANs. , 2017, , .		3
24	Efficiency analysis of cellular/LiFi traffic offloading. Applied Optics, 2021, 60, 4291.	1.8	3
25	Deep learning based adaptive modulation and coding for uplink multi-user SIMO transmissions in IEEE 802.11ax WLANs. Wireless Networks, 2021, 27, 5217-5227.	3.0	3
26	WLAN Channel Assignment Based on Minimizing the Worst-Case Interference. Wireless Personal Communications, 2017, 95, 4867-4881.	2.7	2
27	Efficiency of opportunistic cellular/LiFi traffic offloading. , 2017, , .		2
28	Optimal Joint Beamforming and Power Control in Cell-Free Massive MIMO Downlink., 2021,,.		2
29	A maxmin approach for channel assignment in multi-cell WLANs. IEICE Communications Express, 2014, 3, 175-181.	0.4	1
30	A dynamic distributed frequency reuse scheme for OFDMA downlink cellular networks. IEICE Communications Express, 2016, 5, 248-253.	0.4	1
31	Dynamic autonomous frequency reuse for uplink cellular networks. , 2018, , .		0
32	Performance analysis of mid-symbol antenna transition spatial modulation approach over Rician fading channels. Wireless Networks, 2021, 27, 2015-2022.	3.0	0
33	Double Antenna-Transitions Spatial Modulation Performance Evaluation Over Nakagami- <i> m </i> Wireless Fading Channels. IEEE Access, 2021, 9, 25482-25494.	4.2	0
34	Low Complexity Channel Assignment for IEEE 802.11b/g Multi-Cell WLANs. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014, E97.A, 1761-1769.	0.3	0
35	In-Sequence Zeros-Ones Patterns Exploiting Approach for Spatial Modulation Performance Enhancement. Menoufia Journal of Electronic Engineering Research, 2019, 28, 183-196.	0.5	0
36	Efficient Epileptic Seizure Prediction Approach Based on Hilbert Transform. Menoufia Journal of Electronic Engineering Research, 2019, 28, 17-32.	0.5	0