
Rong Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/858098/publications.pdf Version: 2024-02-01

PONC CAL

#	Article	IF	CITATIONS
1	The Crown and the Scepter: Roles of the Protein Corona in Nanomedicine. Advanced Materials, 2019, 31, e1805740.	21.0	355
2	The Nano–Bio Interactions of Nanomedicines: Understanding the Biochemical Driving Forces and Redox Reactions. Accounts of Chemical Research, 2019, 52, 1507-1518.	15.6	211
3	Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today, 2021, 37, 101073.	11.9	182
4	Designing Liposomes To Suppress Extracellular Matrix Expression To Enhance Drug Penetration and Pancreatic Tumor Therapy. ACS Nano, 2017, 11, 8668-8678.	14.6	175
5	Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nature Nanotechnology, 2021, 16, 708-716.	31.5	153
6	Long-term pulmonary exposure to multi-walled carbon nanotubes promotes breast cancer metastatic cascades. Nature Nanotechnology, 2019, 14, 719-727.	31.5	131
7	Understanding the Chemical Nature of Nanoparticle–Protein Interactions. Bioconjugate Chemistry, 2019, 30, 1923-1937.	3.6	109
8	Corona of Thorns: The Surface Chemistry-Mediated Protein Corona Perturbs the Recognition and Immune Response of Macrophages. ACS Applied Materials & Interfaces, 2020, 12, 1997-2008.	8.0	100
9	Chemical and Biophysical Signatures of the Protein Corona in Nanomedicine. Journal of the American Chemical Society, 2022, 144, 9184-9205.	13.7	98
10	Precision Nanomedicine Development Based on Specific Opsonization of Human Cancer Patient-Personalized Protein Coronas. Nano Letters, 2019, 19, 4692-4701.	9.1	87
11	Immunological Responses Induced by Blood Protein Coronas on Two-Dimensional MoS ₂ Nanosheets. ACS Nano, 2020, 14, 5529-5542.	14.6	82
12	Influence of stepwise chondrogenesis-mimicking 3D extracellular matrix on chondrogenic differentiation of mesenchymal stem cells. Biomaterials, 2015, 52, 199-207.	11.4	74
13	Dynamic intracellular exchange of nanomaterials' protein corona perturbs proteostasis and remodels cell metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	56
14	Amyloidosis inhibition, a new frontier of the protein corona. Nano Today, 2020, 35, 100937.	11.9	32
15	Matrices secreted during simultaneous osteogenesis and adipogenesis of mesenchymal stem cells affect stem cells differentiation. Acta Biomaterialia, 2016, 35, 185-193.	8.3	28
16	Influence of surfaces modified with biomimetic extracellular matrices on adhesion and proliferation of mesenchymal stem cells and osteosarcoma cells. Colloids and Surfaces B: Biointerfaces, 2015, 126, 381-386.	5.0	25
17	Synthesis of carbon quantum dots for application of alleviating amyloid-Î ² mediated neurotoxicity. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112373.	5.0	20
18	Protein corona in vivo: dynamic complement proteins-mediated opsonization and immune modulation. Science Bulletin, 2017, 62, 976-977.	9.0	18

Rong Cai

#	Article	IF	CITATIONS
19	Second near-infrared photoactivatable hydrogen selenide nanogenerators for metastasis-inhibited cancer therapy. Nano Today, 2021, 40, 101240.	11.9	18
20	Stem cell Janus patch for periodontal regeneration. Nano Today, 2022, 42, 101336.	11.9	15
21	Gd@C82(OH)22 harnesses inflammatory regeneration for osteogenesis of mesenchymal stem cells through JNK/STAT3 signaling pathway. Journal of Materials Chemistry B, 2018, 6, 5802-5811.	5.8	12
22	Tailoring bismuth-based nanoparticles for enhanced radiosensitivity in cancer therapy. Nanoscale, 2022, 14, 8245-8254.	5.6	10
23	Nanomaterialsâ€Mediated Structural and Physiological Modulation of Blood Brain Barrier for Therapeutic Purposes. Advanced Materials Interfaces, 2022, 9, .	3.7	4